HaptoFloater: Visuo-Haptic Augmented Reality by Embedding Imperceptible Color Vibration Signals for Tactile Display Control in a Mid-Air Image

被引:0
作者
Nagano, Rina [1 ]
Kinoshita, Takahiro [1 ,2 ]
Hattori, Shingo [1 ,2 ]
Hiroi, Yuichi [2 ]
Itoh, Yuta [3 ]
Hiraki, Takefumi [1 ,2 ]
机构
[1] Univ Tsukuba, Tsukuba, Japan
[2] Cluster Metaverse Lab, Tsukuba, Japan
[3] Univ Tokyo, Tokyo, Japan
关键词
Haptic interfaces; Vibrations; Visualization; Image color analysis; Actuators; Delays; Tactile sensors; Visuo-haptic displays; mid-air images; LCD displays; imperceptible color vibration;
D O I
10.1109/TVCG.2024.3456179
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose HaptoFloater, a low-latency mid-air visuo-haptic augmented reality (VHAR) system that utilizes imperceptible color vibrations. When adding tactile stimuli to the visual information of a mid-air image, the user should not perceive the latency between the tactile and visual information. However, conventional tactile presentation methods for mid-air images, based on camera-detected fingertip positioning, introduce latency due to image processing and communication. To mitigate this latency, we use a color vibration technique; humans cannot perceive the vibration when the display alternates between two different color stimuli at a frequency of 25 Hz or higher. In our system, we embed this imperceptible color vibration into the mid-air image formed by a micromirror array plate, and a photodiode on the fingertip device directly detects this color vibration to provide tactile stimulation. Thus, our system allows for the tactile perception of multiple patterns on a mid-air image in 59.5 ms. In addition, we evaluate the visual-haptic delay tolerance on a mid-air display using our VHAR system and a tactile actuator with a single pattern and faster response time. The results of our user study indicate a visual-haptic delay tolerance of 110.6 ms, which is considerably larger than the latency associated with systems using multiple tactile patterns.
引用
收藏
页码:7463 / 7472
页数:10
相关论文
共 49 条
  • [1] Abe Satoshi, 2017, P 2017 CHI C EXT ABS, P1464, DOI [10.1145/3027063.3053074, DOI 10.1145/3027063.3053074]
  • [2] A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces
    Basdogan, Cagatay
    Giraud, Frederic
    Levesque, Vincent
    Choi, Seungmoon
    [J]. IEEE TRANSACTIONS ON HAPTICS, 2020, 13 (03) : 450 - 470
  • [3] REVEL: Tactile Feedback Technology for Augmented Reality
    Bau, Olivier
    Poupyrev, Ivan
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04):
  • [4] Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration
    Cosco, Francesco
    Garre, Carlos
    Bruno, Fabio
    Muzzupappa, Maurizio
    Otaduy, Miguel A.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (01) : 159 - 172
  • [5] Towards Haptic Images: A Survey on Touchscreen-Based Surface Haptics
    Costes, Antoine
    Danieau, Fabien
    Argelaguet, Ferran
    Guillotel, Philippe
    Lecuyer, Anatole
    [J]. IEEE TRANSACTIONS ON HAPTICS, 2020, 13 (03) : 530 - 541
  • [6] de Tinguy X, 2018, 25TH 2018 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES (VR), P81, DOI 10.1109/VR.2018.8446280
  • [7] Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality
    Eck, Ulrich
    Pankratz, Frieder
    Sandor, Christian
    Klinker, Gudrun
    Laga, Hamid
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (12) : 1427 - 1441
  • [8] Freeman E., 2017, P 19 ACM INT C MULT, P491, DOI [10.1145/3136755.3143020, DOI 10.1145/3136755.3143020, 10.1145/3136755.31430203, DOI 10.1145/3136755.31430203]
  • [9] Calibration, Registration, and Synchronization for High Precision Augmented Reality Haptics
    Harders, Matthias
    Bianchi, Gerald
    Knoerlein, Benjamin
    Szekely, Gabor
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (01) : 138 - 149
  • [10] Hattori S., 2024, Measurement of the imperceptible threshold for color vibration pairs selected by using macadam ellipse