Heralded nonlocal quantum gates for distributed quantum computation in a decoherence-free subspace

被引:4
|
作者
Su, Wanhua [1 ]
Qin, Wei [2 ,3 ,4 ]
Miranowicz, Adam [4 ,5 ]
Li, Tao [1 ,6 ]
Nori, Franco [4 ,7 ,8 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Phys, MIIT Key Lab Semicond Microstruct & Quantum Sensin, Nanjing 210094, Peoples R China
[2] Tianjin Univ, Ctr Joint Quantum Studies, Sch Sci, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Sch Sci, Dept Phys, Tianjin 300350, Peoples R China
[4] RIKEN, Theoret Quantum Phys Lab, Cluster Pioneering Res, Saitama 3510198, Japan
[5] Adam Mickiewicz Univ, Inst Spintron & Quantum Informat, Fac Phys & Astron, PL-61614 Poznan, Poland
[6] Engn Res Ctr Semicond Device Optoelect Hybrid Inte, Nanjing 210094, Peoples R China
[7] RIKEN, Quantum Comp Ctr, Quantum Informat Phys Theory Res Team, Wako, Saitama 3510198, Japan
[8] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
基金
日本科学技术振兴机构;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ADVANTAGE; DYNAMICS; PHOTON; QUTIP; ATOM;
D O I
10.1103/PhysRevA.110.052612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a heralded protocol for implementing nontrivial quantum gates on two stationary qubits coupled to spatially separated cavities. By dynamically controlling the evolution of the composite system, nonlocal twoqubit quantum (e.g., CPHASE and CNOT) gates can be achieved without real excitations of either cavity modes or atoms. The success of our protocol is conditioned on projecting an auxiliary atom onto a postselected state, which simultaneously removes various detrimental effects of dissipation on the gate fidelity. In principle, the success probability of the gate can approach unity as the single-atom cooperativity becomes sufficiently large. Furthermore, we show its application for implementing single- and two-qubit gates within a decoherence-free subspace that is immune to a collective dephasing noise. This faithful, heralded, and nonlocal protocol could, therefore, be useful for distributed quantum computation and scalable quantum networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum computation in a decoherence-free subspace with superconducting devices
    Z.-Y. Xue
    S. L. Zhu
    Z. D. Wang
    The European Physical Journal D, 2009, 55 : 223 - 228
  • [2] Quantum computation in a decoherence-free subspace with superconducting devices
    Xue, Z. -Y.
    Zhu, S. L.
    Wang, Z. D.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (01): : 223 - 228
  • [3] Universal quantum computation with electronic qubits in decoherence-free subspace
    Zhang, X. L.
    Feng, M.
    Gao, K. L.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (1-2) : 96 - 105
  • [4] Universal quantum computation with electronic qubits in decoherence-free subspace
    State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    不详
    不详
    Quantum Information and Computation, 2008, 8 (1-2): : 0096 - 0105
  • [5] Universal quantum computation in decoherence-free subspace with neutral atoms
    Xue, Peng
    Xiao, Yun-Feng
    PHYSICAL REVIEW LETTERS, 2006, 97 (14)
  • [6] Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits
    Xue, Zheng-Yuan
    Zhou, Jian
    Wang, Z. D.
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [7] Universal quantum computation in a neutral-atom decoherence-free subspace
    Brion, E.
    Pedersen, L. H.
    Molmer, K.
    Chutia, S.
    Saffman, M.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [8] Universal quantum computation with quantum-dot cellular automata in decoherence-free subspace
    Xu, Z.Y.
    Fenga, M.
    Zhang, W.M.
    Quantum Information and Computation, 2008, 8 (10): : 0977 - 0986
  • [9] UNIVERSAL QUANTUM COMPUTATION WITH QUANTUM-DOT CELLULAR AUTOMATA IN DECOHERENCE-FREE SUBSPACE
    Xu, Z. Y.
    Feng, M.
    Zhang, W. M.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (10) : 977 - 986
  • [10] Decoherence-free quantum computation.
    Lidar, DA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U190 - U190