A trajectory prediction method based on graph attention mechanism

被引:0
|
作者
Zhou H. [1 ]
Zhao T. [2 ]
Fang Y. [2 ]
Liu Q. [3 ]
机构
[1] Department of Electromechanical and Information Engineering, Changde Vocational Technical College, Changde
[2] School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing
[3] School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing
关键词
Convolutional neural network; Feature vector; Graph attention mechanism; Temporal Transformer model; Trajectory prediction;
D O I
10.2478/amns.2023.1.00481
中图分类号
学科分类号
摘要
Vehicle trajectory prediction is one of the key technologies to realize autonomous driving, which provides an important guarantee for the safety of vehicles in the process of autonomous driving. In this paper, with this as the starting point, a graph convolutional neural network is introduced through a graph attention mechanism to obtain scene features by modeling the temporal Transformer model of surrounding information. Based on the temporal convolutional model to obtain scene features, new feature vectors are calculated by aggregating the weights for the features of nodes and neighboring nodes. Then the input feature dimensions are transformed into the weight matrix of the output feature dimensions, and the output feature vector corresponding to the attention coefficients is calculated by using weighted summation. Then the effect of multiple training of the model is evaluated by taking the mean value and defining its structural relationship. The experimental results show that the prediction error of the proposed method is significantly smaller than that of the comparison method in scenarios with speeds less than or equal to 5m/s and greater than 5m/s. The prediction error based on target detection is reduced by 58.95%, indicating that the proposed method is more consistent with the operation scenarios of autonomous driving. © 2023 Hejun Zhou et al.;published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [1] Vehicle Trajectory Prediction Method Based on Graph Models and Attention Mechanism
    Lian J.
    Ding R.
    Li L.
    Wang X.
    Zhou Y.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (07): : 2162 - 2170
  • [2] Pedestrian Trajectory Prediction Based on Attention Mechanism and Sparse Graph Convolution
    Min, Chen
    Kai, Zeng
    Tao, Shen
    Yan, Zhu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [3] Interactive Vehicle Trajectory Prediction for Highways Based on a Graph Attention Mechanism
    Song, Zhenyu
    Qian, Yubin
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (03):
  • [4] Research on pedestrian trajectory prediction method based on social attention mechanism
    Li L.
    Zhou B.
    Lian J.
    Zhou Y.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (06): : 175 - 183
  • [5] Attention Based Graph Convolutional Networks for Trajectory Prediction
    Chen, Jianxiao
    Chen, Guang
    Li, Zhijun
    Wu, Ya
    Knoll, Alois
    2021 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2021), 2021, : 852 - 857
  • [6] Heterogeneous Multi-object Trajectory Prediction Method Based on Hierarchical Graph Attention
    Hu Q.
    Cai Y.
    Wang H.
    Chen L.
    Dong Z.
    Liu Q.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (08): : 1448 - 1456
  • [7] Pedestrian Trajectory Prediction Based on GAN and Attention Mechanism
    Ouyang Jun
    Shi Qingwei
    Wang Xinxin
    Wang Liang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (14)
  • [8] Confrontational flight trajectory prediction based on attention mechanism
    Sun, Yao
    Wang, Dong
    Wang, Wei
    Xiong, Lei
    Yang, Xingyu
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 211 - 214
  • [9] Vehicle motion trajectory prediction based on attention mechanism
    Liu C.
    Liang J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2020, 54 (06): : 1156 - 1163
  • [10] A Trajectory Prediction Method of Drogue in Aerial Refueling Based on Transfer Learning and Attention Mechanism
    Xing, Xiaojun
    Wang, Rui
    Han, Bing
    Wu, Cihang
    Xiao, Bing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73