Data-driven discovery of drag-inducing elements on a rough surface through convolutional neural networks

被引:1
作者
Shin, Heesoo [1 ]
Khorasani, Seyed Morteza Habibi [2 ]
Shi, Zhaoyu [2 ]
Yang, Jiasheng [3 ]
Bagheri, Shervin [2 ]
Lee, Sangseung [1 ]
机构
[1] Inha Univ, Dept Mech Engn, Inchon 22212, South Korea
[2] KTH, Dept Engn Mech, FLOW, SE-10044 Stockholm, Sweden
[3] Karlsruhe Inst Technol, Inst Fluid Mech, D-76131 Karlsruhe, Germany
基金
新加坡国家研究基金会;
关键词
CHANNEL; FLOW; SIMULATIONS; PREDICTION;
D O I
10.1063/5.0223064
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Understanding the influence of surface roughness on drag forces remains a significant challenge in fluid dynamics. This paper presents a convolutional neural network (CNN) that predicts drag solely by the topography of rough surfaces and is capable of discovering spatial patterns linked to drag-inducing structures. A CNN model was developed to analyze spatial information from the topography of a rough surface and predict the roughness function, Delta U+, obtained from direct numerical simulation. This model enables the prediction of drag from rough surface data alone, which was not possible with previous methods owing to the large number of surface-derived parameters. Additionally, the retention of spatial information by the model enables the creation of a feature map that accentuates critical areas for drag prediction on rough surfaces. By interpreting the feature maps, we show that the developed CNN model is able to discover spatial patterns associated with drag distributions across rough surfaces, even without a direct training on drag distribution data. The analysis of the feature map indicates that, even without flow field information, the CNN model extracts the importance of the flow-directional slope and height of roughness elements as key factors in inducing pressure drag. This study demonstrates that CNN-based drag prediction is grounded in physical principles of fluid dynamics, underscoring the utility of CNNs in both predicting and understanding drag on rough surfaces.
引用
收藏
页数:20
相关论文
共 43 条
  • [41] Data-driven prediction of convective heat transfer coefficients in internal walls of aero-engine bearing chambers using Mind Evolution Algorithm-Enhanced Bayesian regularization neural networks
    Wang, Jiang
    Pan, Yingxiu
    Wang, Yechun
    Guo, Liejin
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [42] A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition
    Zhang, Xike
    Zhang, Qiuwen
    Zhang, Gui
    Nie, Zhiping
    Gui, Zifan
    Que, Huafei
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (05)
  • [43] Bio-hydrogen production from the photocatalytic conversion of wastewater: Parametric analysis and data-driven modelling using nonlinear autoregressive with exogeneous input and back-propagated multilayer perceptron neural networks
    Kanthasamy, Ramesh
    Ali, Imtiaz
    Ayodele, Bamidele Victor
    Maddah, Hisham A.
    FUEL, 2023, 344