Novel (3+1)-dimensional variable-coefficients Boussinesq-type equation: exploring integrability, Wronskian, and Grammian solutions

被引:0
作者
Madadi, Majid [1 ]
Asadi, Esmaeel [1 ,2 ]
Inc, Mustafa [3 ,4 ]
机构
[1] Inst Adv Studies Basic Sci IASBS, Dept Math, Zanjan 4513766731, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[4] Firat Univ, Dept Math, TR-23119 Elazig, Turkiye
关键词
Boussinesq equation; Painlev & eacute; integrability; Wronskian; Grammian; PAINLEVE PROPERTY; SOLITON;
D O I
10.1088/1402-4896/ad8d3e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we introduce a novel (3 + 1)-dimensional variable-coefficients Boussinesq-type equation. We analyze its integrability using the Painleve test and the N-soliton solution, demonstrating that both tests yield identical conditions. Using the Hirota bilinear form of the equation, we derive Wronskian and Grammian determinant solutions utilizing Pl & uuml;cker relations and the Jacobi identity for determinants. In particular, we use elementary transformation and long wave limit to get the determinant expression of mth-order lump solutions from the 2mth-order Wronskian determinant solutions. Furthermore, we reveal a variety of novel semi-rational solutions using the Hirota method and Grammian determinant techniques.
引用
收藏
页数:23
相关论文
共 54 条
  • [1] RESONANTLY COUPLED NONLINEAR EVOLUTION EQUATIONS
    ABLOWITZ, MJ
    HABERMAN, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (11) : 2301 - 2305
  • [2] Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method
    Akbar, M. Ali
    Akinyemi, Lanre
    Yao, Shao-Wen
    Jhangeer, Adil
    Rezazadeh, Hadi
    Khater, Mostafa M. A.
    Ahmad, Hijaz
    Inc, Mustafa
    [J]. RESULTS IN PHYSICS, 2021, 25
  • [3] LUMP AND MULTIPLE SOLITON SOLUTIONS TO THE NEW INTEGRABLE (3+1)-DIMENSIONAL BOUSSINESQ EQUATION
    Alhejaili, Weaam
    Wazwaz, Abdul-Majid
    El-Tantawy, S. A.
    [J]. ROMANIAN REPORTS IN PHYSICS, 2023, 75 (04)
  • [4] On the transverse instabilities of solitary waves
    Allen, MA
    Rowlands, G
    [J]. PHYSICS LETTERS A, 1997, 235 (02) : 145 - 146
  • [5] Exponential polynomials
    Bell, ET
    [J]. ANNALS OF MATHEMATICS, 1934, 35 : 258 - 277
  • [6] Partial degeneration of finite gap solutions to the Korteweg-de Vries equation: soliton gas and scattering on elliptic backgrounds
    Bertola, M.
    Jenkins, R.
    Tovbis, A.
    [J]. NONLINEARITY, 2023, 36 (07) : 3622 - 3660
  • [7] Boussinesq J., 1871, Journal de Math matiques Pures et Appliqu es, V12, P55
  • [8] Cao YL, 2023, NONLINEAR DYNAM, V111, P13391, DOI 10.1007/s11071-023-08555-y
  • [9] Dissipative soliton resonances
    Chang, W.
    Ankiewicz, A.
    Soto-Crespo, J. M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [10] Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Ma, Yong-Xin
    Zhou, Tian-Yu
    Shen, Yuan
    [J]. PHYSICS OF FLUIDS, 2022, 34 (11)