Progress in niobium-based oxides as anode for fast-charging Li-ion batteries

被引:1
|
作者
Xie F. [1 ]
Xu J. [1 ]
Liao Q. [2 ]
Zhang Q. [2 ]
Liu B. [3 ]
Shao L. [1 ]
Cai J. [1 ]
Shi X. [1 ]
Sun Z. [1 ]
Wong C.-P. [4 ]
机构
[1] School of Materials and Energy, Guangdong University of Technology, Guangzhou
[2] Guangzhou Nano New Material Technology Co., Ltd., Guangzhou
[3] Guanghua Institute of Sci-Tech (Guangdong) Co., Ltd., Guangzhou
[4] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA
来源
Energy Reviews | 2023年 / 2卷 / 02期
关键词
Advanced characterization techniques; Energy storage materials; Fast-charging; Li-ion batteries; Modification; Nb[!sub]2[!/sub]O[!sub]5[!/sub]-Derived compounds; Niobium-based oxides;
D O I
10.1016/j.enrev.2023.100027
中图分类号
学科分类号
摘要
With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics, there is a growing interest in high-rate energy storage systems. The rapid development and widespread adoption of lithium-ion batteries (LIBs) can be attributed to their numerous advantages, including high energy density, high operating voltage, environmental friendliness, and lack of memory effect. However, the progress of LIBs is currently hindered by the limitations of energy storage materials, which serve as vital components. Therefore, there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology. Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan. This review paper provides a comprehensive analysis of the fundamentals, methodologies, and electrochemistries of niobium-based oxides, with a specific focus on the evolution and creation of crystal phases of Nb2O5, fundamental electrochemical behavior, and modification methods including morphology modulation, composite technology, and carbon coating. Furthermore, the review explores Nb2O5-derived compounds and related advanced characterization techniques. Finally, the challenges and issues in the development of niobium-based oxides for high-rate energy storage batteries are discussed, along with future research perspectives. © 2023 The Authors
引用
收藏
相关论文
共 50 条
  • [41] Wadsley-Roth Phase Niobium-Based Oxide Anode Promising High Power and Energy Density Aqueous Li-Ion Batteries
    Zhu, Xiangzhen
    Mao, Minglei
    Lin, Zejing
    Yue, Jinming
    Li, Meiying
    Lv, Tianshi
    Zhou, Anxing
    Hu, Yong-Sheng
    Li, Hong
    Huang, Xuejie
    Chen, Liquan
    Suo, Liumin
    ACS MATERIALS LETTERS, 2022, 4 (09): : 1574 - 1583
  • [42] Recent Progress on High.rate Niobium-based Oxides Anode Materials
    Ye Yihua
    Ba Deliang
    Liu Shuailei
    Chen Yinglin
    Li Yuanyuan
    Liu Jinping
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (10): : 3005 - 3023
  • [43] Research progress on electrolytes for fast-charging lithium-ion batteries
    Dan Zhang
    Le Li
    Weizhuo Zhang
    Minghui Cao
    Hengwei Qiu
    Xiaohui Ji
    Chinese Chemical Letters, 2023, 34 (01) : 114 - 120
  • [44] Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries
    Zhang, Yuxuan
    Kim, Jae Chul
    Song, Han Wook
    Lee, Sunghwan
    NANOSCALE, 2023, 15 (09) : 4195 - 4218
  • [45] Research progress on electrolytes for fast-charging lithium-ion batteries
    Zhang, Dan
    Li, Le
    Zhang, Weizhuo
    Cao, Minghui
    Qiu, Hengwei
    Ji, Xiaohui
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [46] Investigation of cobalt oxides as anode materials for Li-ion batteries
    Wang, GX
    Chen, Y
    Konstantinov, K
    Lindsay, M
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 142 - 147
  • [47] In Situ Li-Plating Diagnosis for Fast-Charging Li-Ion Batteries Enabled by Relaxation-Time Detection
    Xu, Lei
    Xiao, Ye
    Yang, Yi
    Xu, Rui
    Yao, Yu-Xing
    Chen, Xiao-Ru
    Li, Ze-Heng
    Yan, Chong
    Huang, Jia-Qi
    ADVANCED MATERIALS, 2023, 35 (42)
  • [48] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ateş
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15
  • [49] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [50] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Weng, Suting
    Yang, Gaojing
    Zhang, Simeng
    Liu, Xiaozhi
    Zhang, Xiao
    Liu, Zepeng
    Cao, Mengyan
    Ates, Mehmet Nurullah
    Li, Yejing
    Chen, Liquan
    Wang, Zhaoxiang
    Wang, Xuefeng
    NANO-MICRO LETTERS, 2023, 15 (01)