Progress in niobium-based oxides as anode for fast-charging Li-ion batteries

被引:1
|
作者
Xie F. [1 ]
Xu J. [1 ]
Liao Q. [2 ]
Zhang Q. [2 ]
Liu B. [3 ]
Shao L. [1 ]
Cai J. [1 ]
Shi X. [1 ]
Sun Z. [1 ]
Wong C.-P. [4 ]
机构
[1] School of Materials and Energy, Guangdong University of Technology, Guangzhou
[2] Guangzhou Nano New Material Technology Co., Ltd., Guangzhou
[3] Guanghua Institute of Sci-Tech (Guangdong) Co., Ltd., Guangzhou
[4] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA
来源
Energy Reviews | 2023年 / 2卷 / 02期
关键词
Advanced characterization techniques; Energy storage materials; Fast-charging; Li-ion batteries; Modification; Nb[!sub]2[!/sub]O[!sub]5[!/sub]-Derived compounds; Niobium-based oxides;
D O I
10.1016/j.enrev.2023.100027
中图分类号
学科分类号
摘要
With the increasing popularity of electric/hybrid vehicles and the rapid development of 3C electronics, there is a growing interest in high-rate energy storage systems. The rapid development and widespread adoption of lithium-ion batteries (LIBs) can be attributed to their numerous advantages, including high energy density, high operating voltage, environmental friendliness, and lack of memory effect. However, the progress of LIBs is currently hindered by the limitations of energy storage materials, which serve as vital components. Therefore, there is an urgent need to address the development of a new generation of high-rate energy storage materials in order to overcome these limitations and further advance LIB technology. Niobium-based oxides have emerged as promising candidates for the fabrication of fast-charging Li-ion batteries due to their excellent rate capability and long lifespan. This review paper provides a comprehensive analysis of the fundamentals, methodologies, and electrochemistries of niobium-based oxides, with a specific focus on the evolution and creation of crystal phases of Nb2O5, fundamental electrochemical behavior, and modification methods including morphology modulation, composite technology, and carbon coating. Furthermore, the review explores Nb2O5-derived compounds and related advanced characterization techniques. Finally, the challenges and issues in the development of niobium-based oxides for high-rate energy storage batteries are discussed, along with future research perspectives. © 2023 The Authors
引用
收藏
相关论文
共 50 条
  • [1] Bi Works as a Li Reservoir for Promoting the Fast-Charging Performance of Phosphorus Anode for Li-Ion Batteries
    Zhang, Shaojie
    Zhang, Yiming
    Zhang, Ziyi
    Wang, Huili
    Cao, Yu
    Zhang, Baoshan
    Liu, Xinyi
    Mao, Chong
    Han, Xinpeng
    Gong, Haochen
    Yang, Zhanxu
    Sun, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (19)
  • [2] In-situ construction of dual-coated silicon/carbon composite anode for fast-charging Li-ion batteries
    Wu, Shijie
    Wu, Heng
    Kong, Xiangjian
    Li, Yuting
    Xu, Guobao
    Su, Jincang
    Huang, Jianyu
    Wang, Gang
    Ou, Xing
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [3] Controlling the Crystallographic Orientation of Graphite Electrodes for Fast-Charging Li-Ion Batteries
    Bayindir, Oguz
    Sohel, Ikramul Hasan
    Erol, Melek
    Duygulu, Ozgur
    Ate, Mehmet Nurullah
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 891 - 899
  • [4] Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability
    Park, Mi-Hee
    Noh, Mijung
    Lee, Sanghan
    Ko, Minseong
    Chae, Sujong
    Sim, Soojin
    Choi, Sinho
    Kim, Hyejung
    Nam, Haisol
    Park, Soojin
    Cho, Jaephil
    NANO LETTERS, 2014, 14 (07) : 4083 - 4089
  • [5] Fe3O4/Graphene Composite Anode Material for Fast-Charging Li-Ion Batteries
    Staffolani, Antunes
    Darjazi, Hamideh
    Carbonari, Gilberto
    Maroni, Fabio
    Gabrielli, Serena
    Nobili, Francesco
    MOLECULES, 2021, 26 (14):
  • [6] Experimental comparison of fast-charging protocols for NMC and NCA Li-ion batteries
    Bhoir, Shubham Sharad
    Brivio, Claudio
    Namor, Emil
    Hutter, Andreas
    2021 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2021,
  • [7] Nickel Silicate Hydroxides/Expanded Graphite as a Stable and Fast-Charging Anode for the Next-Generation Li-ion Batteries
    Sahoo, Ramesh Chandra
    Mohanta, Manish Kumar
    Tamudia, Deepak Kumar
    Jena, Puru
    Matte, H. S. S. Ramakrishna
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (09) : 14157 - 14167
  • [8] The origin of the superior fast-charging performance of hybrid graphite/ hard carbon anodes for Li-ion batteries
    Goel, Vishwas
    Masel, Kevin
    Chen, Kuan-Hung
    Safdari, Ammar
    Dasgupta, Neil P.
    Thornton, Katsuyo
    ENERGY STORAGE MATERIALS, 2025, 76
  • [9] The Puzzles in Fast Charging of Li-Ion Batteries
    Sheng Shui Zhang
    Energy & Environmental Materials, 2022, 5 (04) : 1005 - 1007
  • [10] The Puzzles in Fast Charging of Li-Ion Batteries
    Zhang, Sheng Shui
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1005 - 1007