A near-single-ion conducting polymer-in-ceramic electrolyte for solid-state lithium metal batteries with superior cycle stability and rate capability

被引:4
作者
Zheng, Zhuoyuan [1 ]
Zhou, Xianlong [1 ]
Zhu, ZhengFeng [1 ]
Zhou, Jie [1 ]
Zhong, Guoqiang [1 ]
Yao, Wangbing [2 ]
Zhu, Yusong [1 ,2 ]
机构
[1] School of Energy Science and Engineering and Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, Nanjing Tech University, Jiangsu Province, Nanjing
[2] Nanjing Gotion Battery Co. Ltd., Jiangsu Province, Nanjing
基金
中国国家自然科学基金;
关键词
Composite solid-state electrolytes (CSE); Li[!sub]1.5[!/sub]La[!sub]1.5[!/sub]TeO[!sub]6[!/sub] (LLTeO); Lithium metal batteries; Polymer-in-ceramic electrolyte; Single-ion conductive;
D O I
10.1016/j.cej.2024.157572
中图分类号
学科分类号
摘要
Composite solid-state electrolytes (CSE) represent a promising alternative to conventional porous separators and organic liquid electrolyte systems in commercialized lithium metal battery (LMBs), offering effective dendrite suppression, high interfacial compatibility and enhanced cycle life. This study introduces a polymer-in-ceramic electrolyte, which is synthesized by blending perovskite-type inorganic electrolyte Li1.5La1.5TeO6 (LLTeO) with polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVDF), denoted as PMMA/PVDF-LLTeO. The resulting CSE features a dense, non-porous structure, high mechanical strength, excellent thermal stability, and a broad electrochemical window. Notably, with the incorporation of a high ceramic filler content (up to 70 %), the CSE promotes a hybrid ion transport mechanism, yielding a near-single-ion conducting behavior with an ion transference number of 0.833, and a high elastic modulus of approximately 1 GPa. These attributes collectively contribute to the suppression of dendrite growth, as analyzed through multiphysics-based simulations. Li//Li symmetric cells using PMMA/PVDF-LLTeO-70 exhibit robust lithium stripping-plating stability, with a critical current density of 0.45 mA cm−2. Furthermore, the corresponding Li//LiFePO4 cells exhibit superior rate performance and cyclic stability, achieving over 150 cycles with a capacity retention rate of 92.2 % at high temperatures (60 °C). This research highlights the potential of the proposed CSE with high-temperature applications, significantly improving the safety and performance of LMBs. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 74 条
  • [11] Ma Y., Wan J., Yang Y., Ye Y., Xiao X., Boyle D.T., Burke W., Huang Z., Chen H., Cui Y., Yu Z., Oyakhire S.T., Cui Y., Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries, Adv. Energy Mater., 12, 15, (2022)
  • [12] Zhang R., Shen X., Zhang Y.-T., Zhong X.-L., Ju H.-T., Huang T.-X., Chen X., Zhang J.-D., Huang J.-Q., Dead lithium formation in lithium metal batteries: a phase field model, J. Energy Chem., 71, pp. 29-35, (2022)
  • [13] Zhang Y., Chen K., Shen Y., Lin Y., Nan C.-W., Enhanced lithium-ion conductivity in a LiZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> solid electrolyte by Al doping, Ceram. Int., 43, pp. S598-S602, (2017)
  • [14] Zhao Q., Stalin S., Zhao C.-Z., Archer L.A., Designing solid-state electrolytes for safe, energy-dense batteries, Nat. Rev. Mater., 5, 3, pp. 229-252, (2020)
  • [15] Lakshmanan A., Gurusamy R., Ramani A., Srinivasan N., Venkatachalam S., Densification effect of perovskite-type Li<sub>3x</sub>La<sub>2/3-x</sub>TiO<sub>3</sub> solid-state electrolytes for energy storage applications, Ceram. Int., 50, 17, Part A, pp. 30240-30251, (2024)
  • [16] Wu J.-F., Chen E.-Y., Yu Y., Liu L., Wu Y., Pang W.K., Peterson V.K., Guo X., Gallium-doped Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> garnet-type electrolytes with high lithium-ion conductivity, ACS Appl. Mater. Interfaces, 9, 2, pp. 1542-1552, (2017)
  • [17] Xu X., Wen Z., Yang X., Chen L., Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique, Mater. Res. Bull., 43, 8, pp. 2334-2341, (2008)
  • [18] Yamane H., Shibata M., Shimane Y., Junke T., Seino Y., Adams S., Minami K., Hayashi A., Tatsumisago M., Crystal structure of a superionic conductor, Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub>, Solid State Ion., 178, 15, pp. 1163-1167, (2007)
  • [19] Li X., Liang J., Luo J., Norouzi Banis M., Wang C., Li W., Deng S., Yu C., Zhao F., Hu Y., Sham T.-K., Zhang L., Zhao S., Lu S., Huang H., Li R., Adair K.R., Sun X., Air-stable Li<sub>3</sub>InCl<sub>6</sub> electrolyte with high voltage compatibility for all-solid-state batteries, Energy Environ. Sci., 12, 9, pp. 2665-2671, (2019)
  • [20] Xu C., Yang Y., Wang H., Xu B., Li Y., Tan R., Duan X., Wu D., Zhuo M., Ma J., Electrolytes for lithium- and sodium-metal batteries, Chem.- Asian J., 15, 22, pp. 3584-3598, (2020)