Learning to match patients to clinical trials using large language models

被引:2
作者
Rybinski, Maciej [1 ]
Kusa, Wojciech [2 ]
Karimi, Sarvnaz [1 ]
Hanbury, Allan [2 ]
机构
[1] CSIRO Data61, 26 Pembroke Rd, Marsfield, NSW 2122, Australia
[2] TU Wien, Favoritenstr 9-11, A-1040 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
Clinical trials; Patient to trials matching; TCRR; TREC CT; Large language models; Information retrieval; Learning-to-rank;
D O I
10.1016/j.jbi.2024.104734
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective: This study investigates the use of Large Language Models (LLMs) for matching patients to clinical trials (CTs) within an information retrieval pipeline. Our objective is to enhance the process of patient-trial matching by leveraging the semantic processing capabilities of LLMs, thereby improving the effectiveness of patient recruitment for clinical trials. Methods: We employed a multi-stage retrieval pipeline integrating various methodologies, including BM25 and Transformer-based rankers, along with LLM-based methods. Our primary datasets were the TREC Clinical Trials 2021-23 track collections. We compared LLM-based approaches, focusing on methods that leverage LLMs in query formulation, filtering, relevance ranking, and re-ranking of CTs. Results: Our results indicate that LLM-based systems, particularly those involving re-ranking with a fine-tuned LLM, outperform traditional methods in terms of nDCG and Precision measures. The study demonstrates that fine-tuning LLMs enhances their ability to find eligible trials. Moreover, our LLM-based approach is competitive with state-of-the-art systems in the TREC challenges. The study shows the effectiveness of LLMs in CT matching, highlighting their potential in handling complex semantic analysis and improving patient-trial matching. However, the use of LLMs increases the computational cost and reduces efficiency. We provide a detailed analysis of effectiveness-efficiency trade-offs. Conclusion: This research demonstrates the promising role of LLMs in enhancing the patient-to-clinical trial matching process, offering a significant advancement in the automation of patient recruitment. Future work should explore optimising the balance between computational cost and retrieval effectiveness in practical applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Distilling large language models for matching patients to clinical trials
    Nievas, Mauro
    Basu, Aditya
    Wang, Yanshan
    Singh, Hrituraj
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09) : 1953 - 1963
  • [2] From RAGs to riches: Utilizing large language models to write documents for clinical trials
    Markey, Nigel
    El-Mansouri, Ilyass
    Rensonnet, Gaetan
    van Langen, Casper
    Meier, Christoph
    CLINICAL TRIALS, 2025,
  • [3] Large language models for automating clinical trial matching
    Layne, Ethan
    Olivas, Claire
    Hershenhouse, Jacob
    Ganjavi, Conner
    Cei, Francesco
    Gill, Inderbir
    Cacciamani, Giovanni E.
    CURRENT OPINION IN UROLOGY, 2025, 35 (03) : 250 - 258
  • [4] Plan, Generate and Match: Scientific Workflow Recommendation with Large Language Models
    Gu, Yang
    Cao, Jian
    Guo, Yuan
    Qian, Shiyou
    Guan, Wei
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 86 - 102
  • [5] Using large language models for safety-related table summarization in clinical study reports
    Landman, Rogier
    Healey, Sean P.
    Loprinzo, Vittorio
    Kochendoerfer, Ulrike
    Winnier, Angela Russell
    Henstock, Peter, V
    Lin, Wenyi
    Chen, Aqiu
    Rajendran, Arthi
    Penshanwar, Sushant
    Khan, Sheraz
    Madhavan, Subha
    JAMIA OPEN, 2024, 7 (02)
  • [6] Tool learning with large language models: a survey
    Qu, Changle
    Dai, Sunhao
    Wei, Xiaochi
    Cai, Hengyi
    Wang, Shuaiqiang
    Yin, Dawei
    Xu, Jun
    Wen, Ji-rong
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (08)
  • [7] Federated and edge learning for large language models
    Piccialli, Francesco
    Chiaro, Diletta
    Qi, Pian
    Bellandi, Valerio
    Damiani, Ernesto
    INFORMATION FUSION, 2025, 117
  • [8] An Investigation of Applying Large Language Models to Spoken Language Learning
    Gao, Yingming
    Nuchged, Baorian
    Li, Ya
    Peng, Linkai
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [9] Large Language Models Demonstrate the Potential of Statistical Learning in Language
    Contreras Kallens, Pablo
    Kristensen-McLachlan, Ross Deans
    Christiansen, Morten H.
    COGNITIVE SCIENCE, 2023, 47 (03) : e13256
  • [10] From statistics to deep learning: Using large language models in psychiatric research
    Hua, Yining
    Beam, Andrew
    Chibnik, Lori B.
    Torous, John
    INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2025, 34 (01)