A short-term power load forecasting system based on data decomposition, deep learning and weighted linear error correction with feedback mechanism

被引:2
|
作者
Dong, Zhaochen [1 ]
Tian, Zhirui [2 ]
Lv, Shuang [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Stat, Dalian 116025, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
关键词
Load forecast; Data preprocessing; Deep learning; Meta-heuristic optimization algorithm; HYBRID; MODEL;
D O I
10.1016/j.asoc.2024.111863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate power load forecasting enables Independent System Operators (ISOs) to precisely quantify the demand patterns of users and achieve efficient management of the smart grid. However, with the increasing variety of power consumption patterns, the power load data displays increasingly irregular characteristics, which posing great challenges for accurate load forecasting. In order to solve above problem, a novel power load forecasting system is proposed based on data denoising, customized deep learning and weighted linear error correction. Specifically, we first proposed an improved optimization algorithm IGWO-JAYA which enhanced the Grey Wolf Optimizer (GWO) algorithm by using Halton low-discrepancy sequence and the mechanism of JAYA algorithm. In data denoising, the proposed optimizer was employed to optimize the Variational Mode Decomposition (VMD), enabling data-driven intelligent denoising. The customized deep learning framework contained multilayer Convolution Neural Network (CNN), Bi-directional Long Short-Term Memory (Bi-LSTM) and MultiHead Attention mechanism. The effective integration of these layers can significantly improve the capacity for nonlinear fitting of deep learning. In weighted linear error correction, the IGWO-JAYA algorithm was employed to determine the appropriate weight for point forecasting values and residual forecasting values. By weighting them, the forecasting precision has been further enhanced. To verify the forecasting ability of the system, we conducted experiments on power load datasets from four states in Australia and found that it has the best performance compared with all rivals. In the discussion, we demonstrated the convergence efficiency of the IGWO-JAYA algorithm by CEC test function.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Short-term load forecasting based on feature mining and deep learning of big data of user electricity consumption
    Wen, Ming
    Yu, Zongchao
    Li, Wenying
    Luo, Shuchen
    Zhong, Yuan
    Changqing, Chen
    AIP ADVANCES, 2023, 13 (12)
  • [42] Short-Term Load Forecasting Based on CNN and LSTM Deep Neural Networks
    Agga, First Ali
    Abbou, Second Ahmed
    El Houm, Yassine
    Labbadi, Moussa
    IFAC PAPERSONLINE, 2022, 55 (12): : 777 - 781
  • [43] Short-Term Traffic Data Forecasting: A Deep Learning Approach
    Agafonov, A. A.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 1 - 10
  • [44] Short-Term Traffic Data Forecasting: A Deep Learning Approach
    A. A. Agafonov
    Optical Memory and Neural Networks, 2021, 30 : 1 - 10
  • [45] A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms
    Hou, Tingting
    Fang, Rengcun
    Tang, Jinrui
    Ge, Ganheng
    Yang, Dongjun
    Liu, Jianchao
    Zhang, Wei
    ENERGIES, 2021, 14 (22)
  • [46] Deep learning based short term load forecasting with hybrid feature selection*
    Subbiah, Siva Sankari
    Chinnappan, Jayakumar
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 210
  • [47] Deep learning model for short-term photovoltaic power forecasting based on variational mode decomposition and similar day clustering
    Li, Meng
    Wang, Wei
    He, Yan
    Wang, Qinghai
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 115
  • [48] Optimized short-term load forecasting in residential buildings based on deep learning methods for different time horizons
    Irankhah, Arghavan
    Yaghmaee, Mohammad Hossein
    Ershadi-Nasab, Sara
    JOURNAL OF BUILDING ENGINEERING, 2024, 84
  • [49] Echo state neural network based ensemble deep learning for short-term load forecasting
    Gao, Ruobin
    Suganthan, P. N.
    Zhou, Qin
    Yuen, Kum Fai
    Tanveer, M.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 277 - 284
  • [50] Short-Term Load Forecasting for Electric Vehicle Charging Stations Based on Deep Learning Approaches
    Zhu, Juncheng
    Yang, Zhile
    Guo, Yuanjun
    Zhang, Jiankang
    Yang, Huikun
    APPLIED SCIENCES-BASEL, 2019, 9 (09):