Remote Sensing Image Pansharpening Using Deep Internal Learning With Residual Double-Attention Network

被引:0
|
作者
Sustika, Rika [1 ,2 ]
Suksmono, Andriyan B. [1 ,3 ,4 ]
Danudirdjo, Donny [1 ]
Wikantika, Ketut [5 ]
机构
[1] Bandung Inst Technol, Sch Elect Engn & Informat, Bandung 40132, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Artificial Intelligence & Cybersecur, Bandung 40135, Indonesia
[3] ITB Res Ctr ICT PPTIK ITB, Bandung 40132, Indonesia
[4] STEI ITB, Res Collaborat Ctr Quantum Technol 2 0, Bandung 40132, Indonesia
[5] Bandung Inst Technol, Fac Earth Sci & Technol, Bandung 40132, Indonesia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Pansharpening; Feature extraction; Spatial resolution; Superresolution; Training; Testing; Supervised learning; Remote sensing; Image reconstruction; Convolutional neural networks; Channel attention; deep internal learning; multispectral; pansharpening; residual; spatial attention; QUALITY ASSESSMENT; FUSION; RESOLUTION; RATIO; MS;
D O I
10.1109/ACCESS.2024.3481466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep convolutional neural networks (CNNs) have significantly improved pansharpening performance compared to traditional methods. However, existing CNN-based methods for pansharpening still lack spatial detail and suffer from spectral distortion. To address this problem, this study proposed a deep learning network based on channel and spatial attention mechanisms to enhance the spatial resolution and decrease the spectral distortion of a pansharpened image. The proposed network consists of a shallow feature extraction (SFE) unit to exploit the spatial and spectral features of the panchromatic (PAN) and multispectral (MS) input images. Furthermore, a double-attention feature fusion (DAFF) module, which consists of residual double-attention modules (RDAMs) with long and short skip connections, was designed to improve the spatial resolution and alleviate the spectral distortion of the output image. In the experiments, we utilized a deep internal learning strategy in which training data were extracted from a large scene of the observed image itself. We evaluated the effectiveness of the proposed method using WorldView-3, Spot-7, Pleiades, and Geoeye datasets. The performance of the proposed method was compared with some existing deep learning-based pansharpening techniques: deep residual pansharpening neural network (DRPNN), residual network (ResNet), residual dense model for pansharpening network (RDMPSnet), symmetric skipped connection convolutional neural network (SSC-CNN), and triplet attention network with information interaction (TANI). The experimental results revealed that the proposed method outperformed all the other methods in terms of quality evaluation metrics and visualization.
引用
收藏
页码:162285 / 162298
页数:14
相关论文
共 50 条
  • [41] Mixed Entropy Model Enhanced Residual Attention Network for Remote Sensing Image Compression
    Gao, Junjun
    Teng, Qizhi
    He, Xiaohai
    Chen, Zhengxin
    Ren, Chao
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 10117 - 10129
  • [42] DARN: Distance Attention Residual Network for Lightweight Remote-Sensing Image Superresolution
    Wang, Qingjian
    Wang, Sen
    Chen, Mingfang
    Zhu, Yang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 714 - 724
  • [43] Mixed Entropy Model Enhanced Residual Attention Network for Remote Sensing Image Compression
    Junjun Gao
    Qizhi Teng
    Xiaohai He
    Zhengxin Chen
    Chao Ren
    Neural Processing Letters, 2023, 55 : 10117 - 10129
  • [44] A Remote-Sensing Image Pan-Sharpening Method Based on Multi-Scale Channel Attention Residual Network
    Li, Xin
    Xu, Feng
    Lyu, Xin
    Tong, Yao
    Chen, Ziqi
    Li, Shengyang
    Liu, Daofang
    IEEE ACCESS, 2020, 8 : 27163 - 27177
  • [45] Pansharpening by interspectral similarity and edge information using improved deep residual network
    Chen, Peng-Yu
    Tai, Shen-Chuan
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (03)
  • [46] Remote Sensing Image Registration Based on Deep Learning Regression Model
    Li, Liangzhi
    Han, Ling
    Ding, Mingtao
    Liu, Zhiheng
    Cao, Hongye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [47] F-UNet plus plus : Remote Sensing Image Fusion Based on Multipurpose Adaptive Shuffle Attention and Composite Multi-Input Reconstruction Network
    Jin, Xin
    Zhang, Pingfan
    Jiang, Qian
    Miao, Shengfa
    Yao, Shaowen
    Zhou, Wei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [48] Remote Sensing Image Super-Resolution via Residual Aggregation and Split Attentional Fusion Network
    Chen, Long
    Liu, Hui
    Yang, Minhang
    Qian, Yurong
    Xiao, Zhengqing
    Zhong, Xiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9546 - 9556
  • [49] Joint learning using multiscale attention-enhanced features for remote sensing image scene classification
    Yu, Donghang
    Xu, Qing
    Liu, Xiangyun
    Lv, Liang
    Guo, Haitao
    Lu, Jun
    Lin, Yuzhun
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [50] U-Shaped Attention Connection Network for Remote-Sensing Image Super-Resolution
    Jiang, Wenzong
    Zhao, Lifei
    Wang, Yan-Jiang
    Liu, Weifeng
    Liu, Bao-Di
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19