Remote Sensing Image Pansharpening Using Deep Internal Learning With Residual Double-Attention Network

被引:0
作者
Sustika, Rika [1 ,2 ]
Suksmono, Andriyan B. [1 ,3 ,4 ]
Danudirdjo, Donny [1 ]
Wikantika, Ketut [5 ]
机构
[1] Bandung Inst Technol, Sch Elect Engn & Informat, Bandung 40132, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Artificial Intelligence & Cybersecur, Bandung 40135, Indonesia
[3] ITB Res Ctr ICT PPTIK ITB, Bandung 40132, Indonesia
[4] STEI ITB, Res Collaborat Ctr Quantum Technol 2 0, Bandung 40132, Indonesia
[5] Bandung Inst Technol, Fac Earth Sci & Technol, Bandung 40132, Indonesia
关键词
Pansharpening; Feature extraction; Spatial resolution; Superresolution; Training; Testing; Supervised learning; Remote sensing; Image reconstruction; Convolutional neural networks; Channel attention; deep internal learning; multispectral; pansharpening; residual; spatial attention; QUALITY ASSESSMENT; FUSION; RESOLUTION; RATIO; MS;
D O I
10.1109/ACCESS.2024.3481466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep convolutional neural networks (CNNs) have significantly improved pansharpening performance compared to traditional methods. However, existing CNN-based methods for pansharpening still lack spatial detail and suffer from spectral distortion. To address this problem, this study proposed a deep learning network based on channel and spatial attention mechanisms to enhance the spatial resolution and decrease the spectral distortion of a pansharpened image. The proposed network consists of a shallow feature extraction (SFE) unit to exploit the spatial and spectral features of the panchromatic (PAN) and multispectral (MS) input images. Furthermore, a double-attention feature fusion (DAFF) module, which consists of residual double-attention modules (RDAMs) with long and short skip connections, was designed to improve the spatial resolution and alleviate the spectral distortion of the output image. In the experiments, we utilized a deep internal learning strategy in which training data were extracted from a large scene of the observed image itself. We evaluated the effectiveness of the proposed method using WorldView-3, Spot-7, Pleiades, and Geoeye datasets. The performance of the proposed method was compared with some existing deep learning-based pansharpening techniques: deep residual pansharpening neural network (DRPNN), residual network (ResNet), residual dense model for pansharpening network (RDMPSnet), symmetric skipped connection convolutional neural network (SSC-CNN), and triplet attention network with information interaction (TANI). The experimental results revealed that the proposed method outperformed all the other methods in terms of quality evaluation metrics and visualization.
引用
收藏
页码:162285 / 162298
页数:14
相关论文
共 53 条
[1]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[2]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[3]   Multispectral and panchromatic data fusion assessment without reference [J].
Alparone, Luciano ;
Alazzi, Bruno ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo ;
Selva, Massimo .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (02) :193-200
[4]   SKNet: Detecting Rotated Ships as Keypoints in Optical Remote Sensing Images [J].
Cui, Zhenyu ;
Leng, Jiaxu ;
Liu, Ying ;
Zhang, Tianlin ;
Quan, Pei ;
Zhao, Wei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10) :8826-8840
[5]   Machine Learning in Pansharpening: A Benchmark, From Shallow to Deep Networks [J].
Deng, Liang-Jian ;
Vivone, Gemine ;
Paoletti, Mercedes ;
Scarpa, Giuseppe ;
He, Jiang ;
Zhang, Yongjun ;
Chanussot, Jocelyn ;
Plaza, Antonio J. .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (03) :279-315
[6]   Pansharpening via Triplet Attention Network With Information Interaction [J].
Diao, Wenxiu ;
Zhang, Feng ;
Wang, Haitao ;
Sun, Jiande ;
Zhang, Kai .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :3576-3588
[7]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[8]   Single-frame super-resolution in remote sensing: a practical overview [J].
Fernandez-Beltran, Ruben ;
Latorre-Carmona, Pedro ;
Pla, Filiberto .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (01) :314-354
[9]  
Fu J, 2018, INT GEOSCI REMOTE SE, P8014, DOI 10.1109/IGARSS.2018.8518584
[10]   COLOR ENHANCEMENT OF HIGHLY CORRELATED IMAGES .2. CHANNEL RATIO AND CHROMATICITY TRANSFORMATION TECHNIQUES [J].
GILLESPIE, AR ;
KAHLE, AB ;
WALKER, RE .
REMOTE SENSING OF ENVIRONMENT, 1987, 22 (03) :343-365