Thermal performance analysis of magnetohydrodynamic Al2O3-SiO2-TiO2/water ternary hybrid nanofluid in converging and diverging channels with nanoparticle shape effects

被引:1
作者
Mohana, C. M. [1 ]
Kumar, B. Rushi [1 ]
Nagarathnam, Sunitha [2 ]
Shivakumara, I. S. [3 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Univ Cape Town, Ctr Res Computat & Appl Mech, ZA-7701 Rondebosch, South Africa
[3] Bangalore Univ, Dept Math, Bangalore 560056, Karnataka, India
关键词
Ternary hybrid nanofluid; Irreversibility analysis; Homotopy analysis method; Nanoparticle shape effects; Multiple linear regression; HEAT-TRANSFER; FLOW; GENERATION; CONVECTION;
D O I
10.1016/j.csite.2024.105429
中图分类号
O414.1 [热力学];
学科分类号
摘要
Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al2O3-SiO2-TiO2/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system's behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (Q = 2 ) and decreased by-16.12% with heat sink (Q = -2 ). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al2O3/H2O, Al2O3- TiO2/H2O, and Al2O3-SiO2-TiO2/H2O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.
引用
收藏
页数:18
相关论文
共 51 条
[1]  
Adnan K., 2022, Front. Chem., V10
[2]   Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects [J].
Alharbi, Khalid Abdulkhaliq M. ;
Ahmed, Ahmed El-Sayed ;
Sidi, Maawiya Ould ;
Ahammad, Nandalur Ameer ;
Mohamed, Abdullah ;
El-Shorbagy, Mohammed A. ;
Bilal, Muhammad ;
Marzouki, Riadh .
MICROMACHINES, 2022, 13 (04)
[3]   Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: A fractional model [J].
Arif, Muhammad ;
Kumam, Poom ;
Kumam, Wiyada ;
Mostafa, Zaydan .
CASE STUDIES IN THERMAL ENGINEERING, 2022, 31
[4]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[5]   Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics [J].
Bejan, A .
REVUE GENERALE DE THERMIQUE, 1996, 35 (418-19) :637-646
[6]   MHD Flow of Hybrid Nanofluid Between Convergent/Divergent Channel by Using Daftardar-Jafari Method [J].
Bouchireb, Abdelouahab ;
Khan, Ilyas ;
Kezzar, Mohamed ;
Alqahtani, Sultan ;
Sari, Mohamed R. ;
Rafique, Khuram ;
Tabet, Ismail .
BIONANOSCIENCE, 2024, 14 (02) :1583-1600
[7]  
Das Ashik Chandra, 2021, J ENG SCI, V12, P79
[8]  
Fenizri W., 2022, Int. J. Ambient Energy, V43, P3686
[9]  
Fraenkel L.E., 1962, Series a., Math. Phys. Sci., V267, P119
[10]   Flow dynamics and enhanced mixing in a converging-diverging channel [J].
Gepner, S. W. ;
Floryan, J. M. .
JOURNAL OF FLUID MECHANICS, 2016, 807 :167-204