Wideband Adaptive Beamforming via Multiscale Channel Attention Convolutional Neural Network

被引:0
|
作者
Liu, Fulai [1 ,2 ]
Yang, Jinwei [3 ]
Yu, Qiuying [3 ]
Ge, Junjie [3 ]
Du, Ruiyan [1 ,2 ]
Zhang, Aiyi [3 ]
机构
[1] Northeastern Univ Qinhuangdao, Lab Electromagnet Environm Cognit & Control Utili, Qinhuangdao 066004, Hebei, Peoples R China
[2] Northeastern Univ Qinhuangdao, Hebei Key Lab Marine Percept Network & Data Proce, Qinhuangdao 066004, Hebei, Peoples R China
[3] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); mainlobe interference suppression; weight vector prediction; wideband adaptive beamforming (WAB); LOCALIZATION; PROJECTION;
D O I
10.1109/JSEN.2024.3432613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considering the problem that beam distortion caused by the coexistence of mainlobe and sidelobe interferences in the received data of sensor arrays, this article presents an effective wideband adaptive beamforming (WAB) method based on multiscale channel attention convolutional neural network (MACNN), named as WAB-MACNN algorithm. In the presented approach, a multiscale channel attention module is constructed to improve the prediction accuracy of beamforming weight vector. Specifically, via two branches with different scales, the attention weights of different feature channels can be better obtained to effectively strengthen significant features and weaken meaningless features for beamforming weight vector prediction. Then, with blocking matrix preprocessing (BMP) and interference-plus-noise covariance matrix (INCM) reconstruction, an efficient beamformer is used as the developed network training label to remove mainlobe interference and suppress sidelobe interferences. Finally, the well-trained model can rapidly and exactly output the predicted beamforming weight vector without complex matrix operations. Simulation results demonstrate that the presented algorithm can offer better beamforming performance with low time consumption under the coexistence of both mainlobe and sidelobe interferences.
引用
收藏
页码:29323 / 29330
页数:8
相关论文
共 50 条
  • [1] The Adaptive Wideband Beamforming using Convolutional Neural Network
    Wu, Xun
    Zhang, Shurui
    Ma, Xiaofeng
    Guo, Shanhong
    Sheng, Weixing
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [2] Robust adaptive beamforming via residual convolutional neural network
    Liu, Fulai
    Qin, Dongbao
    Li, Xubin
    Du, Yufeng
    Dou, Xiuquan
    Du, Ruiyan
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2024, 16 (06) : 1024 - 1032
  • [3] Robust Wideband Adaptive Beamforming by Convolutional Neural Network Structures in an Array System
    Janani, Reza
    Mofrad, Reza Fatemi
    IETE JOURNAL OF RESEARCH, 2024, 70 (06) : 5497 - 5509
  • [4] Fast Wideband Beamforming Using Convolutional Neural Network
    Wu, Xun
    Luo, Jie
    Li, Guowei
    Zhang, Shurui
    Sheng, Weixing
    REMOTE SENSING, 2023, 15 (03)
  • [5] Convolutional neural network optimization via channel reassessment attention module
    Shan, Xinxin
    Shen, Yutao
    Cai, Haibin
    Wen, Ying
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [6] Robust Adaptive Beamforming Based on a Convolutional Neural Network
    Liao, Zhipeng
    Duan, Keqing
    He, Jinjun
    Qiu, Zizhou
    Li, Binbin
    ELECTRONICS, 2023, 12 (12)
  • [7] Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
    Yang, Hua
    Yang, Ming
    He, Bitao
    Qin, Tao
    Yang, Jing
    ENTROPY, 2022, 24 (09)
  • [8] Improved Convolutional Neural Network for Wideband Space-Time Beamforming
    Guo, Ming
    Shen, Zixuan
    Zhou, Yuee
    Li, Shenghui
    ELECTRONICS, 2024, 13 (13)
  • [9] Multiscale Convolutional Neural Network Based on Channel Space Attention for Gearbox Compound Fault Diagnosis
    Xu, Qinghong
    Jiang, Hong
    Zhang, Xiangfeng
    Li, Jun
    Chen, Lan
    SENSORS, 2023, 23 (08)
  • [10] Hybrid Beamforming for MISO System via Convolutional Neural Network
    Zhang, Teng
    Dong, Anming
    Zhang, Chuanting
    Yu, Jiguo
    Qiu, Jing
    Li, Sufang
    Zhou, You
    ELECTRONICS, 2022, 11 (14)