The R Package Ecosystem for Robust Statistics

被引:0
|
作者
Todorov, Valentin [1 ]
机构
[1] United Nations Ind Dev Org UNIDO, Vienna, Austria
来源
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS | 2024年 / 16卷 / 06期
关键词
high dimensions; multivariate; outlier; R; robust; PRINCIPAL COMPONENT ANALYSIS; PROJECTION-PURSUIT APPROACH; MULTIVARIATE LOCATION; OUTLIER DETECTION; FAST ALGORITHM; REGRESSION; ESTIMATORS; COVARIANCE; DISPERSION; SCATTER;
D O I
10.1002/wics.70007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the last few years, the number of R packages implementing different robust statistical methods have increased substantially. There are now numerous packages for computing robust multivariate location and scatter, robust multivariate analysis like principal components and discriminant analysis, robust linear models, and other algorithms dedicated to cope with outliers and other irregularities in the data. This abundance of package options may be overwhelming for both beginners and more experienced R users. Here we provide an overview of the most important 25 R packages for different tasks. As metrics for the importance of each package, we consider its maturity and history, the number of total and average monthly downloads from CRAN (The Comprehensive R Archive Network), and the number of reverse dependencies. Then we briefly describe what each of these package does. After that we elaborate on the several above-mentioned topics of robust statistics, presenting the methodology and the implementation in R and illustrating the application on real data examples. Particular attention is paid to the robust methods and algorithms suitable for high-dimensional data. The code for all examples is accessible on the GitHub repository .
引用
收藏
页数:30
相关论文
共 50 条
  • [31] pvclass: An R Package for p Values for Classification
    Zumbrunnen, Niki
    Duembgen, Lutz
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 78 (04): : 1 - 19
  • [32] npbr: A Package for Nonparametric Boundary Regression in R
    Daouia, Abdelaati
    Laurent, Thibault
    Noh, Hohsuk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (09):
  • [33] The idm Package: Incremental Decomposition Methods in R
    D'Enza, Alfonso Iodice
    Markos, Angelos
    Buttarazzi, Davide
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 86 (CN4): : 1 - 24
  • [34] TUTORIAL TO ROBUST STATISTICS
    ROUSSEEUW, PJ
    JOURNAL OF CHEMOMETRICS, 1991, 5 (01) : 1 - 20
  • [35] A survey of robust statistics
    Morgenthaler S.
    Statistical Methods and Applications, 2007, 15 (3): : 271 - 293
  • [36] Robust Sparse PCA with R
    Todorov, Valentin
    COMBINING, MODELLING AND ANALYZING IMPRECISION, RANDOMNESS AND DEPENDENCE, SMPS 2024, 2024, 1458 : 518 - 525
  • [37] A Robust Statistics Approach to Minimum Variance Portfolio Optimization
    Yang, Liusha
    Couillet, Romain
    McKay, Matthew R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (24) : 6684 - 6697
  • [38] Conducting Meta-Analyses in R with the metafor Package
    Viechtbauer, Wolfgang
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 36 (03): : 1 - 48
  • [39] extRemes 2.0: An Extreme Value Analysis Package in R
    Gilleland, Eric
    Katz, Richard W.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (08): : 1 - 39
  • [40] OCAPIS: R package for Ordinal Classification and Preprocessing in Scala
    Cristina Heredia-Gomez, M.
    Garcia, Salvador
    Antonio Gutierrez, Pedro
    Herrera, Francisco
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2019, 8 (03) : 287 - 292