MoS2/CuS/g-C3N4 double S-scheme with charge storage ability for efficient photocatalytic H2 production

被引:0
|
作者
Xia, Jiahui [1 ]
Gao, Ting [1 ]
Ma, Haixia [1 ]
Tian, Jingzhuo [1 ]
Liu, Enzhou [1 ,2 ]
机构
[1] Northwest Univ, Sch Chem Engn, Xian Key Lab Special Energy Mat, Xian 710069, Peoples R China
[2] Northwest Univ, Shaanxi Key Lab Carbon Neutral Technol, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2/CuS; Charge storage; Double S-scheme heterojunction; H2; production; HYDROGEN-PRODUCTION; CARRIER DYNAMICS; HETEROJUNCTION; CONSTRUCTION; HETEROSTRUCTURE; DEGRADATION; G-C3N4;
D O I
10.1016/j.ceramint.2024.09.235
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The photocatalytic H2 2 production technology exhibits promising potential in addressing the challenges of environmental pollution and energy crisis. In this work, CuS particles decorated MoS2 2 seaweed spheres (MoS2/ 2 / CuS) were synthesized through a hydrothermal method, then they are loaded on the surface of g-C3N4 3 N 4 nanosheets using a solvent evaporation strategy to form MoS2/CuS/g-C3N4 2 /CuS/g-C 3 N 4 double S-scheme heterojunction. The investigation reveals the H2 2 production rate of 25 wt % MoS2/CuS/g-C3N4 2 /CuS/g-C 3 N 4 can reach up to 1438 mu mol center dot g-1 center dot h-1,-1 center dot h-1 , which is 14.8-fold of g-C3N4 3 N 4 (97 mu mol center dot g-1 center dot h-1).-1 center dot h-1 ). Further studies indicate that the introduction of MoS2/CuS 2 /CuS can broaden the light absorption range, increase electrochemical specific surface area, reduce the activation energy for H2 2 production and increase hydrophilicity of the composite. Especially, CuS can suppress carrier recombination effectively through its electron storage and release ability. Based on the experimental and theoretical analysis of band structures, the charge transfer in MoS2/CuS/g-C3N4 2 /CuS/g-C 3 N 4 shares optimized double S-scheme charge transfer pathways with a dual reduction site, leading to an enhanced H2 2 evolution kinetics. This work offers valuable insights for the advancement of novel double S-scheme heterojunctions, showcasing their potential in energy storage and photothermal enhancement effects.
引用
收藏
页码:48814 / 48825
页数:12
相关论文
共 50 条
  • [21] High photocatalytic activity of g-C3N4/CdZnS/MoS2 3 N 4 /CdZnS/MoS 2 heterojunction for hydrogen production
    Lu, Ping
    Zhao, Haixia
    Li, Zhengmin
    Chu, Mengzhu
    Xie, Guangwen
    Xie, Tian
    Jiang, Luhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 776 - 785
  • [22] 2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution
    Dong, Pengyu
    Zhang, Aicaijun
    Cheng, Ting
    Pan, Jinkang
    Song, Jun
    Zhang, Lei
    Guan, Rongfeng
    Xi, Xinguo
    Zhang, Jinlong
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (10) : 2592 - 2605
  • [23] An investigation on the synthesis and characterization of MoS2 nanoflowers draped g-C3N4 nano sheet (g-C3N4 / MoS2 / MnOOH) ternary composite for the efficient photocatalytic applications
    Sekar, M.
    Saravanan, K.
    Prasath, M.
    Bernadsha, S. Bharathi
    CHEMICAL PHYSICS IMPACT, 2024, 9
  • [24] Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface
    Zhang, Qiqi
    Bai, Xue
    Hu, Xiaoyun
    Fan, Jun
    Liu, Enzhou
    APPLIED SURFACE SCIENCE, 2022, 579
  • [25] Enhanced photocatalytic H2 evolution on g-C3N4 nanosheets loaded with nitrogen-doped MoS2 as cocatalysts
    Wei, Xuegang
    Wang, Mei
    Ali, Salamat
    Wang, Jiatai
    Zhou, Yongjie
    Zuo, Ruiyin
    Zhong, Qingxiao
    Zhan, Changkun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 89 : 691 - 702
  • [26] Thin-layer g-C3N4 nanosheet decoration with MoS2 nanoparticles as a highly efficient photocatalyst in the H2 production reaction
    Kadi M.W.
    Mohamed R.M.
    Ismail A.A.
    Journal of Nanoparticle Research, 2020, 22 (06)
  • [27] Construction of S-scheme CdS/g-C3N4 heterojunctions with enhanced photocatalytic H2 evolution and Cr(VI) reduction performance
    Gong, Yuyang
    Xu, Zhengdong
    Zhong, Junbo
    Ren, Dan
    Ma, Dongmei
    Li, Minjiao
    Huang, Shengtian
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 180
  • [28] Reinforced photocatalytic H2 generation behavior of S-scheme NiO/g-C3N4 heterojunction photocatalysts with enriched nitrogen vacancies
    Li, Youmei
    Zhong, Junbo
    Li, Jianzhang
    OPTICAL MATERIALS, 2023, 135
  • [29] H2 production using CuS/g-C3N4 nanocomposites under visible light
    Mohammad W. Kadi
    Reda M. Mohamed
    Adel A. Ismail
    Delft W. Bahnemann
    Applied Nanoscience, 2020, 10 : 223 - 232
  • [30] Efficient photocatalytic H2O2 production and photodegradation of RhB over K-doped g-C3N4/ZnO S-scheme heterojunction
    Liang, Huagen
    Zhao, Jingbo
    Brouzgou, Angeliki
    Wang, Anhu
    Jing, Shengyu
    Kannan, Palanisamy
    Chen, Fu
    Tsiakaras, Panagiotis
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 1120 - 1133