Frequency-Resolved Purcell Effect for the Dissipative Generation of Steady-State Entanglement

被引:1
|
作者
Vivas-Viana, Alejandro [1 ,2 ,3 ]
Martin-Cano, Diego [1 ,2 ]
Munoz, Carlos Sanchez [1 ,2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, Madrid 28049, Spain
[3] CSIC, Inst Fundamental Phys, Calle Serrano 113b, Madrid 28006, Spain
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ROOM-TEMPERATURE; 2-LEVEL ATOM; QUANTUM DOTS; DYNAMICS; MOLECULE; COHERENCE; EMISSION; DRIVEN; QUTIP;
D O I
10.1103/PhysRevLett.133.173601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a driven-dissipative mechanism to generate stationary entangled W states among strongly interacting quantum emitters placed within a cavity. Driving the ensemble into the highest energy state- whether coherently or incoherently-enables a subsequent cavity-enhanced decay into an entangled steady state consisting of a single deexcitation shared coherently among all emitters, i.e., a W state, well known for its robustness against qubit loss. The nonharmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity, while quenching subsequent off-resonant decays. Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid state, enabling new prospects for the scalable stabilization of quantum states in dissipative quantum platforms.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Steady-state entanglement enhanced by a dissipative ancilla
    Fischbach, Joachim
    Freyberger, Matthias
    PHYSICAL REVIEW A, 2015, 92 (05)
  • [2] Steady-state entanglement generation for nondegenerate qubits
    Oliveira, Murilo H.
    Higgins, Gerard
    Zhang, Chi
    Predojevic, Ana
    Hennrich, Markus
    Bachelard, Romain
    Villas-Boas, Celso J.
    PHYSICAL REVIEW A, 2023, 107 (02)
  • [3] Speed up generation of steady-state entanglement with Lyapunov control engineered dissipative ancilla
    Liu, Sha-Li
    Xie, Qin
    Shan, Wu-Jiang
    Ianconescu, Reuven
    Ran, Du
    Xia, Yan
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [4] Steady-state entanglement of two superconducting qubits engineered by dissipation
    Reiter, Florentin
    Tornberg, L.
    Johansson, Goran
    Sorensen, Anders S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [5] Steady-state charging of quantum batteries via dissipative ancillas
    Kamin, F. H.
    Salimi, S.
    Arjmandi, M. B.
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [6] Dissipative generation of steady-state entanglement of two separated SiV<mml:msup>-</mml:msup> centers coupled to photonic crystal cavities
    Li, Xinke
    Ma, Shengli
    Xie, Jikun
    Ren, Yalong
    Li, Fuli
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [7] Steady-state entanglement activation in optomechanical cavities
    Farace, Alessandro
    Ciccarello, Francesco
    Fazio, Rosario
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [8] An Overview: Steady-State Quantum Entanglement via Reservoir Engineering
    Pedram, Ali
    Mustecaplioglu, Ozgur E.
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2023, 18 (01) : 67 - 81
  • [9] Autonomous quantum thermal machine for generating steady-state entanglement
    Brask, Jonatan Bohr
    Haack, Geraldine
    Brunner, Nicolas
    Huber, Marcus
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] Maximal steady-state entanglement in autonomous quantum thermal machines
    Khandelwal, Shishir
    Annby-Andersson, Bjoern
    Diotallevi, Giovanni Francesco
    Wacker, Andreas
    Tavakoli, Armin
    NPJ QUANTUM INFORMATION, 2025, 11 (01)