CV-MOS: A Cross-View Model for Motion Segmentation

被引:0
|
作者
Tang, Xiaoyu [1 ,2 ]
Chen, Zeyu [1 ,2 ]
Cheng, Jintao [1 ,2 ]
Chen, Xieyuanli [3 ]
Wu, Jin [4 ]
Xue, Bohuan [5 ]
机构
[1] South China Normal Univ, Fac Engn, Sch Elect & Informat Engn, Foshan 528225, Guangdong, Peoples R China
[2] South China Normal Univ, Xingzhi Coll, Guangzhou 510000, Guangdong, Peoples R China
[3] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Semantics; Three-dimensional displays; Feature extraction; Laser radar; Periodic structures; Motion segmentation; Autonomous driving; cross view; LiDAR motion segmentation;
D O I
10.1109/TIM.2024.3458036
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In autonomous driving, accurately distinguishing between static and moving objects is crucial for the autonomous driving system. When performing the motion object segmentation (MOS) task, effectively leveraging motion information from objects becomes a primary challenge in improving the recognition of moving objects. Previous methods either utilized range view (RV) or bird's eye view (BEV) residual maps to capture motion information. Unlike traditional approaches, we propose combining RV and BEV residual maps to exploit a greater potential of motion information jointly. Thus, we introduce CV-MOS, a cross-view model for moving object segmentation. Novelty, we decouple spatial-temporal information by capturing the motion from BEV and RV residual maps and generating semantic features from range images, which are used as moving object guidance for the motion branch. Our direct and unique solution maximizes the use of range images and RV and BEV residual maps, significantly enhancing the performance of LiDAR-based MOS task. Our method achieved leading IoU (%) scores of 77.5% and 79.2% on the validation and test sets of the SemanticKITTI dataset. In particular, CV-MOS demonstrates SOTA performance to date on various datasets. The CV-MOS implementation is available at https://github.com/SCNU-RISLAB/CV-MOS.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Cross-View Gait Recognition via View Information Elimination Mechanism
    Zhang, Shuai
    Liu, Chibiao
    IEEE ACCESS, 2024, 12 : 182455 - 182468
  • [22] Cross-View Relation Networks for Mammogram Mass Detection
    Ma, Jiechao
    Li, Xiang
    Li, Hongwei
    Wang, Ruixuan
    Menze, Bjoern
    Zheng, Wei-Shi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8632 - 8638
  • [23] Cross-view gait recognition through ensemble learning
    Wang, Xiuhui
    Yan, Wei Qi
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 7275 - 7287
  • [24] Enhancing Cross-View Geo-Localization With Domain Alignment and Scene Consistency
    Xia, Panwang
    Wan, Yi
    Zheng, Zhi
    Zhang, Yongjun
    Deng, Jiwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13271 - 13281
  • [25] MCCG: A ConvNeXt-Based Multiple-Classifier Method for Cross-View Geo-Localization
    Shen, Tianrui
    Wei, Yingmei
    Kang, Lai
    Wan, Shanshan
    Yang, Yee-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1456 - 1468
  • [26] Cross-View Gait Recognition Using Joint Bayesian
    Li, Chao
    Sun, Shouqian
    Chen, Xiaoyu
    Min, Xin
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [27] Cross-view gait recognition through ensemble learning
    Xiuhui Wang
    Wei Qi Yan
    Neural Computing and Applications, 2020, 32 : 7275 - 7287
  • [28] Semi-paired hashing for cross-view retrieval
    Shen, Xiaobo
    Sun, Quan-Sen
    Yuan, Yun-Hao
    NEUROCOMPUTING, 2016, 213 : 14 - 23
  • [29] Cross-View Gait Recognition Based on Feature Fusion
    Hong, Qi
    Wang, Zhongyuan
    Chen, Jianyu
    Huang, Baojin
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 640 - 646
  • [30] Adversarial Feature Refinement for Cross-View Action Recognition
    Marsella, Antonio
    Goyal, Gaurvi
    Odone, Francesca
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 1046 - 1054