Time-optimal control of a solid-state spin amidst dynamical quantum wind

被引:0
作者
Dong, Yang [1 ,2 ]
Jiang, Wang [1 ,2 ]
Gao, Xue-Dong [1 ,2 ,3 ]
Yu, Cui [3 ]
Liu, Yong [1 ,2 ]
Zhang, Shao-Chun [1 ,2 ]
Chen, Xiang-Dong [1 ,2 ,4 ]
Moreira, Iberio de P. R. [5 ,6 ]
Bofill, Josep Maria [5 ,7 ]
Sentis, Gael [8 ]
Ramos, Ramon [8 ]
Albareda, Guillermo [8 ]
Guo, Guang-Can [1 ,2 ,4 ]
Sun, Fang-Wen [1 ,2 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[3] Natl Key Lab Solid State Microwave Devices & Circu, Shijiazhuang 050051, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[5] Univ Barcelona, Inst Theoret & Computat Chem, IQTCUB, Marti i Franques 1-11, Barcelona 08028, Spain
[6] Univ Barcelona, Dept Ciencia Mat & Quim Fis, Marti i Franques 1-11, Barcelona 08028, Spain
[7] Univ Barcelona, Dept Quim Inorgan & Organ, Seccio Quim Organ, Carrer Marti i Franques 1-11, Barcelona 08028, Spain
[8] Ideaded SL, Carrer Tecnol 35, Barcelona 08840, Spain
基金
中国国家自然科学基金;
关键词
All Open Access; Gold;
D O I
10.1038/s41534-024-00912-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Time-optimal control holds promise across the full spectrum of quantum technologies, where the rapid generation of unitary gates and state transformations is crucial to mitigate decoherence effects. In practical scenarios, quantum systems are always immersed in an external time-dependent field or potential, either owing to the inevitable influence of the environment or as a sought-after effect for enhanced coherence. The challenge then lies in finding the time-optimal approach to navigate quantum systems amidst dynamical ambient Hamiltonians, a pursuit that has proven elusive thus far. We showcase the implementation of arbitrary quantum state transformations and a universal set of single-qubit gates under a background Landau-Zener Hamiltonian. Leveraging the favorable coherence properties of timedomain Rabi oscillations, we achieve velocities surpassing the Mandelstam-Tamm quantum speed limit and significantly lower energy costs than those incurred by conventional quantum control techniques. These findings highlight a promising pathway to expedite and economize high-fidelity quantum operations.
引用
收藏
页数:8
相关论文
共 71 条
  • [1] Energetic cost of quantum control protocols
    Abah, Obinna
    Puebla, Ricardo
    Kiely, Anthony
    De Chiara, Gabriele
    Paternostro, Mauro
    Campbell, Steve
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (10):
  • [2] Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines
    Arrachea, Liliana
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (03)
  • [3] Phenomenological theory of variational quantum ground-state preparation
    Astrakhantsev, Nikita
    Mazzola, Guglielmo
    Tavernelli, Ivano
    Carleo, Giuseppe
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [4] Quantum Technologies Need a Quantum Energy Initiative
    Auffeves, Alexia
    [J]. PRX QUANTUM, 2022, 3 (02):
  • [5] Roadmap on STIRAP applications
    Bergmann, Klaas
    Naegerl, Hanns-Christoph
    Panda, Cristian
    Gabrielse, Gerald
    Miloglyadov, Eduard
    Quack, Martin
    Seyfang, Georg
    Wichmann, Gunther
    Ospelkaus, Silke
    Kuhn, Axel
    Longhi, Stefano
    Szameit, Alexander
    Pirro, Philipp
    Hillebrands, Burkard
    Zhu, Xue-Feng
    Zhu, Jie
    Drewsen, Michael
    Hensinger, Winfried K.
    Weidt, Sebastian
    Halfmann, Thomas
    Wang, Hai-Lin
    Paraoanu, Gheorghe Sorin
    Vitanov, Nikolay V.
    Mompart, Jordi
    Busch, Thomas
    Barnum, Timothy J.
    Grimes, David D.
    Field, Robert W.
    Raizen, Mark G.
    Narevicius, Edvardas
    Auzinsh, Marcis
    Budker, Dmitry
    Palffy, Adriana
    Keitel, Christoph H.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (20)
  • [6] Transitionless quantum driving
    Berry, M. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
  • [7] QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY
    BHATTACHARYYA, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13): : 2993 - 2996
  • [8] Time-optimal synthesis of SU(2) transformations for a spin-1/2 system
    Boozer, A. D.
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [9] Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    [J]. PRX QUANTUM, 2021, 2 (03):
  • [10] Time-optimal navigation through quantum wind
    Brody, Dorje C.
    Gibbons, Gary W.
    Meier, David M.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17 : 1 - 8