Local FRP Cracking and Global Structural Behavior of Stub Concrete-Filled FRP Tubes under Concentric and Eccentric Compression

被引:0
|
作者
Chen, Guang-Ming [1 ]
He, Jia-Le [1 ]
Zheng, Bo-Tong [2 ]
机构
[1] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510641, Peoples R China
[2] Univ Southern Calif, Sonny Astani Dept Civil & Environm Engn, 1042 Downey Way, Los Angeles, CA 90089 USA
基金
中国国家自然科学基金;
关键词
Fiber-reinforced polymer (FRP); Concrete-filled FRP tubes (CFFTs); High-strength concrete (HSC); Eccentric compression; Glass fiber-reinforced polymer (GFRP) tube cracking; Serviceability limit state; HIGH-STRENGTH CONCRETE; COMPOSITE TUBES; RECYCLED AGGREGATE; AXIAL BEHAVIOR; COLUMNS; STEEL; GLASS; GFRP; SEAWATER; CARBON;
D O I
10.1061/JCCOF2.CCENG-4802
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper examines experimental data from 22 large-scale concrete-filled FRP tubes (CFFTs), each 900 mm in length and 300 mm in diameter, subjected to either concentric or eccentric compression. The study encompasses CFFTs composed of normal-strength concrete (NSC) and high-strength concrete (HSC), employing glass fiber-reinforced polymer (GFRP) tubes with fiber angles of 60 degrees and 80 degrees. A primary focus of this study is investigating the cracking behavior of GFRP tubes in CFFTs during loading, a durability/serviceability-related issue that has received limited attention in existing literature. Based on the test data, the study identifies two distinct types of cracking: tension-induced cracking under eccentric compression and hoop crushing under either concentric or eccentric compression. The paper delves into the underlying mechanisms behind these cracking phenomena and thoroughly explores the influence of variables such as fiber-reinforced polymer (FRP) tube thickness, fiber angle, and the type of concrete core on the observed cracking behavior. Meanwhile, the paper provides an in-depth analysis of the structural behavior of CFFTs, with a focus on aspects such as GFRP tube thickness, fiber angle, and the differences between NSC and HSC cores. These experimental results not only enhance the understanding of the behavior of large-scale CFFTs under concentric or eccentric compressions but also offer crucial insights into the differences in the compressive behavior of FRP-confined NSC columns and FRP-confined HSC columns. Additionally, the comparative analyses of local cracking behavior with the global behavior of CFFTs contribute vital information toward the development of a design method of CFFT columns in practice, with different considerations of the issues in the ultimate limit state and serviceability limit state (e.g., the corrosion protection capabilities of the GFRP tube in CFFTs).
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression
    Tang, Hongyuan
    Chen, Junlong
    Fan, Luyao
    Sun, Xujie
    Peng, Chunmei
    THIN-WALLED STRUCTURES, 2020, 146
  • [42] Corner strengthening of square and rectangular concrete-filled FRP tubes
    Chen, Linpeng
    Ozbakkaloglu, Togay
    ENGINEERING STRUCTURES, 2016, 117 : 486 - 495
  • [43] Compound concrete-filled FRP tubular columns under cyclic axial compression
    Zhou, J. K.
    Lin, Guan
    Teng, J. G.
    COMPOSITE STRUCTURES, 2021, 275
  • [44] Behaviour of FRP-confined compound concrete-filled circular thin steel tubes under axial compression
    Zhao, Junliang
    Xu, Chenhao
    Sun, Linzhu
    Wu, Dongyan
    ADVANCES IN STRUCTURAL ENGINEERING, 2020, 23 (09) : 1772 - 1784
  • [45] Closed form constitutive relationship for concrete filled FRP tubes under compression
    Albanesi, Tommaso
    Nuti, Camillo
    Vanzi, Ivo
    CONSTRUCTION AND BUILDING MATERIALS, 2007, 21 (02) : 409 - 427
  • [46] STRAIN EFFICIENCY OF FRP JACKETS IN FRP-CONFINED CONCRETE-FILLED CIRCULAR STEEL TUBES
    Li, S. Q.
    Chen, J. F.
    Bisby, L. A.
    Hu, Y. M.
    Teng, J. G.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2012, 12 (01) : 75 - 94
  • [47] Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes
    Ozbakkaloglu, Togay
    Vincent, Thomas
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2014, 18 (02)
  • [48] Compressive behavior of concrete-filled FRP tubes with FRP solid waste as recycled aggregates: Experimental study and analytical modelling
    Zhang, Bing
    Sun, Jiaming
    Zhang, Sumei
    Zhou, Chong
    Fan, Zhihong
    Yan, Yunhao
    Lin, Guan
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [49] COMPRESSIVE BEHAVIOR OF SQUARE AND RECTANGULAR HIGH-STRENGTH CONCRETE-FILLED FRP TUBES
    Ozbakkaloglu, Togay
    PROCEEDINGS OF THE TWELFTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOLS I AND II, 2012, : 965 - 970
  • [50] Performance of Concrete-Filled FRP Tubes under Field Close-in Blast Loading
    Qasrawi, Yazan
    Heffernan, Pat J.
    Fam, Amir
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (04)