A Coupled Game Theory and Lyapunov Optimization Approach to Electric Vehicle Charging at Fast Charging Stations

被引:1
|
作者
Abbasi, Mohammad Hossein [1 ]
Arjmandzadeh, Ziba [2 ]
Zhang, Jiangfeng [1 ]
Krovi, Venkat N. [1 ]
Xu, Bin [2 ]
Mishra, Dillip Kumar [1 ]
机构
[1] Clemson Univ, Dept Automot Engn, Greenville, SC 29607 USA
[2] Univ Oklahoma, Dept Aerosp & Mech Engn, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Optimization; Costs; Pricing; Electric vehicle charging; Games; Vehicle dynamics; Electricity; EV charging scheduling; fast charging station optimization; game theory; Lyapunov optimization;
D O I
10.1109/TVT.2024.3407068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The development of electric vehicle (EV) charging stations has been a key consideration for enabling the evolution of EV technology and continues to support the fosterage of this technology. Notably, fast charging enhances the EV user's adaptability by reducing the charging time and supporting long-mile travel. The optimal operation and erratic power demand of a fast charging station (FCS) are still challenging. It is necessary to understand EV charging scheduling and FCS management, which can jointly overcome the problem of EV users on account of optimal operation. However, joint optimization needs detailed future information, which is a formidable task for prediction. This paper aims to address the joint optimization issue using combined game theory and the Lyapunov optimization approach. This hybrid approach could ease the data forecast requirement and minimize the operating costs of FCSs while optimally dispatching EVs to FCSs and satisfying their energy demand. Further, the problem is decomposed into three subproblems. The first subproblem addresses a network of FCSs that try to maximize their revenue through a dynamic pricing game with EV customers who have different behavioral responses to the prices. The pricing game determines the electricity selling prices in a distributed manner as well as the energy demand of users. Subsequently, EVs are assigned to local FCSs, taking into account the distance from and the queue at the stations. Finally, the third subproblem exploits Lyapunov optimization to control the operation cost of each FCS, considering the impact of demand charges. In this paper, the proposed method is validated through a numerical analysis using the real data of FCSs in Boulder, Colorado. Moreover, the presented results revealed that the proposed method is efficient regarding dynamic pricing and optimal allocation of EVs to stations.
引用
收藏
页码:14224 / 14235
页数:12
相关论文
共 50 条
  • [21] Quantitative calculation and optimization of demand for electric vehicle charging stations
    Fan Ruibo
    Zhang Weichen
    2018 2ND INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2018), 2018, 153
  • [22] Electric Vehicle Charging Stations in Macau
    Ching, T. W.
    25TH WORLD BATTERY, HYBRID AND FUEL CELL ELECTRIC VEHICLE SYMPOSIUM AND EXHIBITION PROCEEDINGS, VOLS 1 & 2, 2010, : 1401 - 1405
  • [23] Electric Vehicle Charging Stations in Magdeburg
    Winkler, Thoralf
    Komarnicki, Przemyslaw
    Mueller, Gerhard
    Heideck, Guenter
    Heuer, Maik
    Styczynski, Zbigniew A.
    2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 56 - 61
  • [24] A Hierarchical Optimization Model for a Network of Electric Vehicle Charging Stations
    Kong, Cuiyu
    Jovanovic, Raka
    Bayram, Islam Safak
    Devetsikiotis, Michael
    ENERGIES, 2017, 10 (05)
  • [25] Metrology for electric vehicle charging stations
    Diaz de Aguilar, Javier
    Luisa Romero, Maria
    Matias, Laura
    Perak, David
    Alvarez, Yolanda
    Cervantes, Manuel
    Morales Plaza, Rodrigo
    Pueyo Balsells, Albert
    2024 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CPEM 2024, 2024,
  • [26] Partial Power Processing Based Charging Unit for Electric Vehicle Extreme Fast Charging Stations
    Anzola, Jon
    Aizpuru, Iosu
    Arruti, Asier
    Alacano, Argine
    Lopez, Ramon
    Artal-Sevil, Jesus Sergio
    Bernal-Ruiz, Carlos
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [27] Economics of Electric Vehicle Charging: A Game Theoretic Approach
    Tushar, Wayes
    Saad, Walid
    Poor, H. Vincent
    Smith, David B.
    IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (04) : 1767 - 1778
  • [28] Fairness and Equity in Electric Vehicle Charging With Mobile Charging Stations
    Beyazit, M. A.
    Erenoglu, A. K.
    Tascikaraoglu, A.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (01) : 1280 - 1291
  • [29] Long-term profit for electric vehicle charging stations: A stochastic optimization approach
    Bagherzadeh, Erfan
    Ghiasian, Ali
    Rabiee, Abdorreza
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2020, 24 (24):
  • [30] Coordinated Charging Strategies for Electric Bus Fast Charging Stations
    Chen, Huimiao
    Hu, Zechun
    Xu, Zhiwei
    Li, Jiayi
    Zhang, Honggang
    Xia, Xue
    Ning, Konghong
    Peng, Mingwei
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1174 - 1179