Comparative analysis of flexural strength prediction in SFRC using frequentist, Bayesian, and Machine Learning approaches

被引:1
作者
De La Rosa, Angel [1 ]
Sainz-Aja, Jose [2 ]
Rivas, Isaac [2 ]
Ruiz, Gonzalo [3 ]
Ferreno, Diego [2 ]
机构
[1] Univ Rey Juan Carlos, Grp Durabil & Integridad Mecan Mat Estruct, C Tulipan S-N, Madrid 28933, Spain
[2] C&P Univ Cantabria, LADICIM Lab Mat Sci & Engn, ETSI Caminos, Ave Castros 44, Santander 39005, Spain
[3] Univ Castilla La Mancha, ETSI Caminos, C&P Ciudad Real,Ave Camilo Jose Cela 2, Ciudad Real 13071, Spain
关键词
Steel-fiber reinforced concrete; Flexural behaviour; Data-driven analysis; Frequentist inference; Bayesian inference; Machine Learning;
D O I
10.1016/j.cscm.2024.e03822
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Steel fiber reinforcement significantly enhances the flexural strength of concrete, which is vital for structural integrity. Annex L of the new Eurocode 2 classifies steel fiber-reinforced concrete by its flexural performance, aiding engineers in designing resilient structures. This study investigates the flexural behavior of steel fiber-reinforced concrete (SFRC) using three data-driven methodologies: Frequentist Inference (FI), Bayesian Inference (BI), and Machine Learning (ML). A comprehensive database was constructed from three-point bending tests on SFRC specimens, encompassing various compressive strengths, fiber quantities, and geometric parameters, to identify key factors influencing material properties. The findings indicate that all three methodologies yield comparable predictive capabilities for flexural responses in SFRC. Notably, FI models emphasize the importance of compressive strength and fiber volume fraction, along with fiber properties such as non-dimensional length and tensile strength. BI models enhance predictive stability by integrating prior knowledge and quantifying uncertainty, demonstrating their advantage, particularly in data-scarce situations. Additionally, ML analysis reveals that linear regression (LR) models can achieve accuracy similar to or greater than that of more complex models. This research provides novel insights into the application of BI and ML in concrete technology, emphasizing their potential to enhance predictive modeling. Additionally, it offers practical guidelines for optimizing SFRC design through a case study that compares residual flexural strengths obtained via Bayesian analysis, classifying the material in accordance with Annex L of the new Eurocode 2.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Customer sentiment analysis and prediction of halal restaurants using machine learning approaches
    Hossain, Md Shamim
    Rahman, Mst Farjana
    Uddin, Md Kutub
    Hossain, Md Kamal
    JOURNAL OF ISLAMIC MARKETING, 2023, 14 (07) : 1859 - 1889
  • [22] DIABETES PREDICTION USING DIFFERENT MACHINE LEARNING APPROACHES
    Sonar, Priyanka
    JayaMalini, K.
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 367 - 371
  • [23] Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
    Ullah, Haji Sami
    Khushnood, Rao Arsalan
    Farooq, Furqan
    Ahmad, Junaid
    Vatin, Nikolai Ivanovich
    Ewais, Dina Yehia Zakaria
    MATERIALS, 2022, 15 (09)
  • [24] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [25] BREAST CANCER PREDICTION USING MACHINE LEARNING APPROACHES
    Kiran, B. Kranthi
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 149 - 155
  • [26] Thyroid Disease Prediction Using Machine Learning Approaches
    Gyanendra Chaubey
    Dhananjay Bisen
    Siddharth Arjaria
    Vibhash Yadav
    National Academy Science Letters, 2021, 44 : 233 - 238
  • [27] Toxicity prediction of nanoparticles using machine learning approaches
    Ahmadi, Mahnaz
    Ayyoubzadeh, Seyed Mohammad
    Ghorbani-Bidkorpeh, Fatemeh
    TOXICOLOGY, 2024, 501
  • [28] Liver Cirrhosis Prediction using Machine Learning Approaches
    Hanif, Ishtiaqe
    Khan, Mohammad Monirujjaman
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 28 - 34
  • [29] A comparative study of Sentiment Analysis Machine Learning Approaches
    Maada, Loukmane
    Al Fararni, Khalid
    Aghoutane, Badraddine
    Fattah, Mohammed
    Farhaoui, Yousef
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 526 - 530
  • [30] Thyroid Disease Prediction Using Machine Learning Approaches
    Chaubey, Gyanendra
    Bisen, Dhananjay
    Arjaria, Siddharth
    Yadav, Vibhash
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (03): : 233 - 238