Granular intents learning via mutual information maximization for knowledge-aware recommendation

被引:0
|
作者
Yang, Hyeongjun [1 ]
Lee, Yerim [1 ]
Park, Gayeon [2 ]
Kim, Taeyoung [2 ]
Kim, Heesun [1 ]
Lee, Kyong-Ho [1 ]
Oh, Byungkook [3 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Yonsei, South Korea
[2] Yonsei Univ, Dept Artificial Intelligence, Seoul, South Korea
[3] Konkuk Univ, Dept Comp Sci & Engn, Seoul, South Korea
关键词
Recommendation; Knowledge graph; Graph neural network; User intents;
D O I
10.1016/j.knosys.2024.112705
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge-aware recommender systems, which utilize knowledge graphs (KGs) to enrich item information, have been shown to improve the accuracy and explainability of recommendations. Besides, KGs are further explored to determine the intent of choosing items (i.e., the reason why users select items of interest). Conventional methods represent intents either assets of relations in a KG or as KG entities. However, such approaches fail to fully leverage the combined information provided by both entities and relations. To address this issue, we propose anew KG-based user Intent Extraction Framework (KIEF) to capture user intents at a more fine-grained level for recommendation. Specifically, we propose a novel intent representation constructed with relation-aware entity representation, encouraging finer granularity for user intents. Furthermore, since a KG may contain noisy information that impairs the quality of user intent, it is compulsory to consider which factors in a KG are important to represent a user's intent. Thus, we introduce global intent which are comprehensive features for the entire interactions of all users and local intent, which are empirical features of individual users from personal history. By maximizing mutual information between global and local intents, KIEF captures user preference for items. Through extensive experiments on four real-world benchmark datasets, we prove the superior performance of KIEF over the state-of-the-art and analyze interpretable explanations for understanding user intents.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Knowledge-aware Network with Social Information for Recommendation
    Chang, Siyu
    Tang, Xiao-Jun
    Lu, Ying
    Liu, Na
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5341 - 5346
  • [2] Knowledge-Aware Group Representation Learning for Group Recommendation
    Deng, Zhiyi
    Li, Changyu
    Liu, Shujin
    Ali, Waqar
    Shao, Jie
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1571 - 1582
  • [3] HIERARCHICAL AND CONTRASTIVE REPRESENTATION LEARNING FOR KNOWLEDGE-AWARE RECOMMENDATION
    Wu, Bingchao
    Kang, Yangyuxuan
    Zan, Daoguang
    Guan, Bei
    Wang, Yongji
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1050 - 1055
  • [4] Intent with knowledge-aware multiview contrastive learning for recommendation
    Tao, Shaohua
    Qiu, Runhe
    Cao, Yan
    Zhao, Huiyang
    Ping, Yuan
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 1349 - 1363
  • [5] Knowledge-Aware Multispace Embedding Learning for Personalized Recommendation
    Jian, Meng
    Zhang, Chenlin
    Fu, Xin
    Wu, Lifang
    Wang, Zhangquan
    SENSORS, 2022, 22 (06)
  • [6] Intent with knowledge-aware multiview contrastive learning for recommendation
    Shaohua Tao
    Runhe Qiu
    Yan Cao
    Huiyang Zhao
    Yuan Ping
    Complex & Intelligent Systems, 2024, 10 : 1349 - 1363
  • [7] DCIB: Dual contrastive information bottleneck for knowledge-aware recommendation
    Guo, Qiang
    Hai, Jialong
    Sun, Zhongchuan
    Wu, Bin
    Ye, Yangdong
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (02)
  • [8] Knowledge-Aware Graph Self-Supervised Learning for Recommendation
    Li, Shanshan
    Jia, Yutong
    Wu, You
    Wei, Ning
    Zhang, Liyan
    Guo, Jingfeng
    ELECTRONICS, 2023, 12 (23)
  • [9] Hierarchical Self-Supervised Learning for Knowledge-Aware Recommendation
    Zhou, Cong
    Zhou, Sihang
    Huang, Jian
    Wang, Dong
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [10] KMIC: A Knowledge-Aware Recommendation with Multivariate Intentions Contrastive Learning
    Peng, Yingtao
    Dan, Tangpeng
    Zhao, Zhendong
    Maoliniyazi, Aishan
    Meng, Xiaofeng
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 82 - 98