A versatile sample fabrication method for ultrafast electron diffraction

被引:11
作者
Bie Y.-Q. [1 ,2 ]
Zong A. [2 ,3 ]
Wang X. [2 ]
Jarillo-Herrero P. [2 ]
Gedik N. [2 ]
机构
[1] State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou
[2] Massachusetts Institute of Technology, Department of Physics, Cambridge, 02139, MA
[3] University of California at Berkeley, Department of Chemistry, Berkeley, 94720, CA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Structural dynamics; Ultrafast electron diffraction; Van der waals materials; Viscoelastic stamping;
D O I
10.1016/j.ultramic.2021.113389
中图分类号
学科分类号
摘要
Integral to the exploration of nonequilibrium phenomena in solid-state systems is the study of lattice motion after photoexcitation by a femtosecond laser pulse. For the past two decades, ultrafast electron diffraction (UED) has played a critical role in this regard. Despite remarkable progress in instrumental development, this technique is still bottlenecked by a demanding sample preparation process, where ultrathin single crystals of large lateral size are typically required. In this work, we describe an efficient, versatile method that yields high-quality, laterally extended (≥ 100 µm), and thin (≤ 50 nm) single crystals on amorphous films of Si3N4 windows. It applies to most exfoliable materials, including those reactive in ambient conditions, and promises clean, flat surfaces. Besides the natural extension to fabricating van der Waals heterostructures, our method can also be applied to future-generation UED that enables additional control of sample parameters, such as electrostatic gating and excitation by a locally enhanced terahertz field. Our work significantly expands the type of samples for UED studies and also finds application in other time-resolved techniques such as attosecond extreme-ultraviolet absorption spectroscopy. This method hence provides further opportunities to explore photoinduced transitions and to discover novel states of matter out of equilibrium. © 2021 Elsevier B.V.
引用
收藏
相关论文
共 54 条
[1]  
Zong A., Kogar A., Gedik N., Unconventional light‑induced states visualized by ultrafast electron diffraction and microscopy, MRS Bulletin, 46, (2021)
[2]  
Weathersby S.P., Brown G., Centurion M., Chase T.F., Coffee R., Corbett J., Eichner J.P., Frisch J.C., Fry A.R., Guhr M., Hartmann N., Hast C., Hettel R., Jobe R.K., Jongewaard E.N., Lewandowski J.R., Li R.K., Lindenberg A.M., Makasyuk I., May J.E., McCormick D., Nguyen M.N., Reid A.H., Shen X., Sokolowski-Tinten K., Vecchione T., Vetter S.L., Wu J., Yang J., Durr H.A., Wang X.J., Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory, Rev. Sci. Instrum., 86,
[3]  
Gedik N., Yang D.-S., Logvenov G., Bozovic I., Zewail A.H., Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography, Science, 316, pp. 425-429, (2007)
[4]  
Zong A., Shen X., Kogar A., Ye L., Marks C., Chowdhury D., Rohwer T., Freelon B., Weathersby S., Li R., Yang J., Checkelsky J., Wang X., Gedik N., Ultrafast manipulation of mirror domain walls in a charge density wave, Sci. Adv., 4, (2018)
[5]  
Sie E.J., Nyby C.M., Pemmaraju C.D., Park S.J., Shen X., Yang J., Hoffmann M.C., Ofori-Okai B.K., Li R., Reid A.H., Weathersby S., Mannebach E., Finney N., Rhodes D., Chenet D., Antony A., Balicas L., Hone J., Devereaux T.P., Heinz T.F., Wang X., Lindenberg A.M., An ultrafast symmetry switch in a Weyl semimetal, Nature, 565, pp. 61-66, (2019)
[6]  
Konstantinova T., Rameau J.D., Reid A.H., Abdurazakov O., Wu L., Li R., Shen X., Gu G., Huang Y., Rettig L., Avigo I., Ligges M., Freericks J.K., Kemper A.F., Durr H.A., Bovensiepen U., Johnson P.D., Wang X., Zhu Y., Nonequilibrium electron and lattice dynamics of strongly correlated Bi2212 single crystals, Sci. Adv., 4, (2018)
[7]  
Zhou F., Williams J., Sun S., Malliakas C.D., Kanatzidis M.G., Kemper A.F., Ruan C., Nonequilibrium dynamics of spontaneous symmetry breaking into a hidden state of charge-density wave, Nat. Commun., 12, (2021)
[8]  
Vogelgesang S., Storeck G., Horstmann J.G., Diekmann T., Sivis M., Schramm S., Rossnagel K., Schafer S., Ropers C., Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction, Nat. Phys., 14, pp. 184-190, (2017)
[9]  
Morimoto Y., Baum P., Diffraction and microscopy with attosecond electron pulse trains, Nat. Phys., 14, pp. 252-256, (2018)
[10]  
Eichberger M., Schafer H., Krumova M., Beyer M., Demsar J., Berger H., Moriena G., Sciaini G., Miller R.J.D., Snapshots of cooperative atomic motions in the optical suppression of charge density waves, Nature, 468, pp. 799-802, (2010)