Lightweight YOLOv5 model based small target detection in power engineering

被引:2
|
作者
Luo P. [1 ]
Zhang X. [1 ]
Wan Y. [1 ]
机构
[1] Nanjing Electricity Supply Industry General Corp., 333 Hanzhongmen Street, Gulou District, Nanjing
来源
Cognitive Robotics | 2023年 / 3卷
关键词
Light-weight model; Power engineering; Small target detection; YOLOv5;
D O I
10.1016/j.cogr.2023.03.002
中图分类号
学科分类号
摘要
Deep learning architectures have yielded a significant leap in target detection performance. However, the high cost of deep learning impedes real-world applications, especially for UAV and UGV platforms. Moreover, detecting small targets is still of lower accuracy in contrast to the large ones. Aiming to comprehensively handle these two issues, a novel SP-CBAM-YOLOv5 architecture is proposed. The main novelty of our hybrid model lies in the cooperation of the attention mechanism and the typical YOLOv5 architecture, which can largely improve the performance of the small target detection. Moreover, the depth convolution and knowledge distillation are jointly introduced for lightening the model architecture. To evaluate the performance of our proposed SP-CBAM-YOLOv5, we built a novel dataset containing challenging scenes of power engineering. Experimental results on this benchmark demonstrate that our proposed SP-CBAM-YOLOv5 achieves a competitive performance in contrast to the other YOLO architectures. Besides, our lightweight YOLOv5 has more than 70% decrease of parameters. Moreover, the ablation study is conducted to demonstrate the compact architecture of SP-CBAM-YOLOv5. © 2023
引用
收藏
页码:45 / 53
页数:8
相关论文
共 50 条
  • [21] Small Aerial Target Detection Algorithm Based on Improved YOLOv5
    Yang, TianLe
    Chen, JinLong
    Yang, MingHao
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II, 2023, 13969 : 207 - 219
  • [22] Lightweight safflower cluster detection based on YOLOv5
    Guo, Hui
    Wu, Tianlun
    Gao, Guomin
    Qiu, Zhaoxin
    Chen, Haiyang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Application of Improved YOLOv5 Algorithm in Lightweight Transmission Line Small Target Defect Detection
    Yu, Zhilong
    Lei, Yanqiao
    Shen, Feng
    Zhou, Shuai
    ELECTRONICS, 2024, 13 (02)
  • [24] Quality Defect Detection of Distribution Network Engineering Based on Lightweight Improved YOLOv5
    Yang L.
    Wang J.
    Duan X.
    Li J.
    Li Y.
    Li F.
    Dianwang Jishu/Power System Technology, 2023, 47 (09): : 3864 - 3872
  • [25] A lightweight small object detection algorithm based on improved YOLOv5 for driving scenarios
    Wen, Zonghui
    Su, Jia
    Zhang, Yongxiang
    Li, Mingyu
    Gan, Guoxi
    Zhang, Shenmeng
    Fan, Deyu
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [26] A lightweight small object detection algorithm based on improved YOLOv5 for driving scenarios
    Zonghui Wen
    Jia Su
    Yongxiang Zhang
    Mingyu Li
    Guoxi Gan
    Shenmeng Zhang
    Deyu Fan
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [27] Small-target smoking detection algorithm based on improved YOLOv5
    Yan, Hong
    Jiang, Zhanbo
    Han, Zeshan
    Jiao, Yufan
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 2187 - 2198
  • [28] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang P.
    Liu Y.
    PeerJ Computer Science, 2024, 10
  • [29] A small target detection algorithm based on improved YOLOv5 in aerial image
    Zhang, PengLei
    Liu, Yanhong
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] Small target disease detection based on YOLOv5 framework for intelligent bridges
    Zhang, Tingping
    Xiong, Yuanjun
    Jiang, Shixin
    Dan, Pingxi
    Gui, Guan
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (05) : 2651 - 2660