Simulation of DIII-D disruption with argon pellet injection and runaway electron beam

被引:0
作者
Zhao, C. [1 ]
Liu, C. [2 ]
Jardin, S. C. [2 ]
Ferraro, N. M. [2 ]
Lyons, B. C. [1 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ USA
关键词
runaway electron seeds; pellet injection; thermal quench; current quench; runaway electron plateau; M3D-C1; modeling;
D O I
10.1088/1741-4326/ad80ab
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The next generation of large tokamaks, including ITER, will be equipped with a disruption mitigation system (DMS) that can be activated if a disruption is deemed to be imminent. Introducing impurities by pellet (large or shattered) or massive gas injection has been shown to be an effective mitigation mechanism on many tokamaks. The goal of the mitigation is to lessen the thermal and electromagnetic loads from the disruption without generating enough high-energy (runaway) electrons to damage the device. Variations of this mitigation process with impurity injection are presently being tested on many experiments. We have modeled one such impurity injection experiment on DIII-D using the M3D-C1 nonlinear 3D extended MHD code (Jardin et al 2012 Comput. Sci. Discovery 6 014002), The model includes an argon large pellet injection and ablation model, impurity ionization, recombination, and radiation, and runaway electron formation and subsequent evolution, including both Dreicer and avalanche sources. We obtain reasonable agreement with the experimental results for the timescale of the thermal and current quench and for the magnitude of the runaway electron plateau formed during the mitigation. This is the first 3D full MHD simulation with pellets and REs to simulate the disruption process and it also provides a partial validation of the M3D-C1 DMS model.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Theory of Two Threshold Fields for Relativistic Runaway Electrons [J].
Aleynikov, Pavel ;
Breizman, Boris N. .
PHYSICAL REVIEW LETTERS, 2015, 114 (15)
[2]   Assessment of runaway electron beam termination and impact in ITER [J].
Bandaru, V. ;
Hoelzl, M. ;
Bergstroem, H. ;
Artola, F. J. ;
Sarkimaki, K. ;
Lehnen, M. .
NUCLEAR FUSION, 2024, 64 (07)
[3]   Simulating the nonlinear interaction of relativistic electrons and tokamak plasma instabilities: Implementation and validation of a fluid model [J].
Bandaru, V ;
Hoelzl, M. ;
Artola, F. J. ;
Papp, G. ;
Huijsmans, G. T. A. .
PHYSICAL REVIEW E, 2019, 99 (06)
[4]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[5]   ELECTRON AND ION RUNAWAY IN A FULLY IONIZED GAS .1. [J].
DREICER, H .
PHYSICAL REVIEW, 1959, 115 (02) :238-249
[6]   Control of post-disruption runaway electron beams in DIII-D [J].
Eidietis, N. W. ;
Commaux, N. ;
Hollmann, E. M. ;
Humphreys, D. A. ;
Jernigan, T. C. ;
Moyer, R. A. ;
Strait, E. J. ;
VanZeeland, M. A. ;
Wesley, J. C. ;
Yu, J. H. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[7]   3D two-temperature magnetohydrodynamic modeling of fast thermal quenches due t o injected impurities in tokamaks [J].
Ferraro, N. M. ;
Lyons, B. C. ;
Kim, C. C. ;
Liu, Y. Q. ;
Jardin, S. C. .
NUCLEAR FUSION, 2019, 59 (01)
[8]   GENERATION AND LOSS OF RUNAWAY ELECTRONS FOLLOWING DISRUPTIONS IN JET [J].
GILL, RD .
NUCLEAR FUSION, 1993, 33 (11) :1613-1625
[9]   An ITPA joint experiment to study runaway electron generation and suppression [J].
Granetz, R. S. ;
Esposito, B. ;
Kim, J. H. ;
Koslowski, R. ;
Lehnen, M. ;
Martin-Solis, J. R. ;
Paz-Soldan, C. ;
Rhee, T. ;
Wesley, J. C. ;
Zeng, L. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[10]  
Jardin S.C., 2012, Comput. Sci. Discov., V5