Attention-Enhanced Multi-Agent Reinforcement Learning Against Observation Perturbations for Distributed Volt-VAR Control

被引:2
|
作者
Yang, Xu [1 ]
Liu, Haotian [1 ]
Wu, Wenchuan [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
Training; Inverters; Perturbation methods; Attention mechanisms; Robustness; Reinforcement learning; Games; Voltage control; cloud-edge collaboration; centralized training & decentralized execution; multi-agent reinforcement learning; attention mechanism; robust regularizer; ACTIVE DISTRIBUTION NETWORKS;
D O I
10.1109/TSG.2024.3423700
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cloud-edge collaboration architecture has been widely adopted for distributed Volt-VAR control (VVC) problems in active distribution networks (ADNs). To alleviate the computation and communication burden on edge sides, centralized training & decentralized execution (CTDE) based multi-agent reinforcement learning methods have been proposed. However, the performance of these methods relies heavily on the agents' coordination mechanism and accurate observations. Given access to a vast amount of distributed energy resources, it becomes increasingly challenging to achieve efficient coordination within CTDE framework. Furthermore, the agents' observations always involve perturbations such as measurement noises and even cyber-attacks in real-world ADNs, which can significantly degrade the distributed VVC performance and may cause severe security issues. In this paper, we propose an attention-enhanced multi-agent reinforcement learning method to address observation perturbations for distributed VVC. In our proposed method, a mix network on the cloud platform with an agent-level attention mechanism is used to approximate the global reward, successfully capturing the intercorrelations between agents and achieving excellent coordination. A novel robust regularizer is also designed to enhance the agents' robustness facing the observation perturbations, which greatly improves the applicability of reinforcement learning methods. Numerical simulations on IEEE test cases with real-world data demonstrate the effectiveness and robustness of our proposed method.
引用
收藏
页码:5761 / 5772
页数:12
相关论文
共 50 条
  • [31] Distributed Transmission Control for Wireless Networks using Multi-Agent Reinforcement Learning
    Farquhar, Collin
    Kumar, Prem
    Jagannath, Anu
    Jagannath, Jithin
    BIG DATA IV: LEARNING, ANALYTICS, AND APPLICATIONS, 2022, 12097
  • [32] Multi-agent reinforcement learning for character control
    Cheng Li
    Levi Fussell
    Taku Komura
    The Visual Computer, 2021, 37 : 3115 - 3123
  • [33] Multipath Routing for Traffic Engineering with Hypergraph Attention Enhanced Multi-Agent Reinforcement Learning
    Cai, Xuhong
    Chen, Yi
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 103 - 108
  • [34] Urban Traffic Control Using Distributed Multi-agent Deep Reinforcement Learning
    Kitagawa, Shunya
    Moustafa, Ahmed
    Ito, Takayuki
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 337 - 349
  • [35] Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility
    Charbonnier, Flora
    Morstyn, Thomas
    McCulloch, Malcolm D.
    APPLIED ENERGY, 2022, 314
  • [36] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12) : 3115 - 3123
  • [37] Consistent Cooperative Control of Multi-Support Systems Using Multi-Agent Reinforcement Learning With Attention Mechanism
    Zhang, Zihang
    Liu, Yang
    Yang, Shangqing
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,
  • [38] Semantic Communication for Partial Observation Multi-agent Reinforcement Learning
    Do, Hoang Khoi
    Dinh, Thi Quynh
    Nguyen, Minh Duong
    Nguyen, Tien Hoa
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 319 - 323
  • [39] A Multi-Agent Reinforcement Learning Method for Cooperative Secondary Voltage Control of Microgrids
    Wang, Tianhao
    Ma, Shiqian
    Tang, Zhuo
    Xiang, Tianchun
    Mu, Chaoxu
    Jin, Yao
    ENERGIES, 2023, 16 (15)
  • [40] Heterogeneous Observation Aggregation Network for Multi-agent Reinforcement Learning
    Hu, Tianyi
    Ai, Xiaolin
    Pu, Zhiqiang
    Qiu, Tenghai
    Yi, Jianqiang
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,