A SEARCH-FREE O (1/k3/2) HOMOTOPY INEXACT PROXIMAL-NEWTON EXTRAGRADIENT ALGORITHM FOR MONOTONE VARIATIONAL INEQUALITIES

被引:0
作者
Alves, M. Marques [1 ]
Pereira, J. M. [2 ]
Svaiter, B. F. [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, Brazil
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
variational inequalities; monotone inclusions; proximal-Newton algorithm; iteration-complexity; ITERATION-COMPLEXITY; CUBIC REGULARIZATION; OPTIMIZATION; ENLARGEMENT;
D O I
10.1137/23M1593000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and study the iteration-complexity of a relative-error inexact proximal- Newton extragradient algorithm for solving smooth monotone variational inequality problems in real Hilbert spaces. We removed a search procedure from Monteiro and Svaiter (2012) by introducing a novel approach based on homotopy, which requires the resolution (at each iteration) of a single strongly monotone linear variational inequality. For a given tolerance p > 0, our main algorithm exhibits pointwise O(1/P) and ergodic O(1/p(2/3)) iteration-complexities. From a practical perspective, preliminary numerical experiments indicate that our main algorithm outperforms some previous proximal-Newton schemes.
引用
收藏
页码:3235 / 3258
页数:24
相关论文
共 33 条
[31]  
Svaiter BF, 2023, Arxiv, DOI arXiv:2303.04972
[32]   A modified forward-backward splitting method for maximal monotone mappings [J].
Tseng, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :431-446
[33]  
VYAS A., 2023, arXiv