A SEARCH-FREE O (1/k3/2) HOMOTOPY INEXACT PROXIMAL-NEWTON EXTRAGRADIENT ALGORITHM FOR MONOTONE VARIATIONAL INEQUALITIES

被引:0
作者
Alves, M. Marques [1 ]
Pereira, J. M. [2 ]
Svaiter, B. F. [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, Brazil
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
variational inequalities; monotone inclusions; proximal-Newton algorithm; iteration-complexity; ITERATION-COMPLEXITY; CUBIC REGULARIZATION; OPTIMIZATION; ENLARGEMENT;
D O I
10.1137/23M1593000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and study the iteration-complexity of a relative-error inexact proximal- Newton extragradient algorithm for solving smooth monotone variational inequality problems in real Hilbert spaces. We removed a search procedure from Monteiro and Svaiter (2012) by introducing a novel approach based on homotopy, which requires the resolution (at each iteration) of a single strongly monotone linear variational inequality. For a given tolerance p > 0, our main algorithm exhibits pointwise O(1/P) and ergodic O(1/p(2/3)) iteration-complexities. From a practical perspective, preliminary numerical experiments indicate that our main algorithm outperforms some previous proximal-Newton schemes.
引用
收藏
页码:3235 / 3258
页数:24
相关论文
共 33 条
[1]  
ADIL D., 2022, arXiv
[2]   Oracle complexity of second-order methods for smooth convex optimization [J].
Arjevani, Yossi ;
Shamir, Ohad ;
Shiff, Ron .
MATHEMATICAL PROGRAMMING, 2019, 178 (1-2) :327-360
[3]  
Bubeck Sebastien, 2019, P MACHINE LEARNING R, V99
[4]   HIGHER-ORDER METHODS FOR CONVEX-CONCAVE MIN-MAX OPTIMIZATION AND MONOTONE VARIATIONAL INEQUALITIES [J].
Bullins, Brian ;
Lai, Kevin A. .
SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (03) :2208-2229
[5]   Enlargement of monotone operators with applications to variational inequalities [J].
Burachik, RS ;
Iusem, AN ;
Svaiter, BF .
SET-VALUED ANALYSIS, 1997, 5 (02) :159-180
[6]  
Carmon Y, 2022, Arxiv, DOI arXiv:2205.15371
[7]  
DENNIS JR J. E., 1996, Society for Industrial and Applied Mathematics, V16, DOI [10.1137/1.9781611971200, DOI 10.1137/1.9781611971200]
[8]  
FACCHINEI F., 2003, SPRING S OPERAT RES, V1
[9]  
Facchinei F., 2007, Springer Series in Operations Research and Financial Engineering
[10]  
Gasnikov A., 2019, PMLR, V99, P1374