Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations

被引:0
|
作者
Han, Wonho [1 ]
Kim, Kwangil [1 ]
Hong, Unhyok [2 ]
机构
[1] Department of Mathematics, University of Sciences, Unjong District 355, Pyongyang,950003, Korea, People's Democratic Rep
[2] Institute of Mathematics, State Academy of Sciences, Unjong District 355, Pyongyang,950003, Korea, People's Democratic Rep
来源
Applications of Mathematics | 2023年 / 68卷 / 05期
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:661 / 684
相关论文
共 35 条
  • [31] Weak Epigraphical Solutions to Hamilton-Jacobi-Bellman Equations on Infinite Horizon
    Basco, Vincenzo
    arXiv, 2022,
  • [32] STOCHASTIC OPTIMAL TRANSPORT AND HAMILTON-JACOBI-BELLMAN EQUATIONS ON THE SET OF PROBABILITY MEASURES
    Bertucci, Charles
    arXiv, 2023,
  • [33] Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
    Wiltzer, Harley
    Meger, David
    Bellemare, Marc G.
    Proceedings of Machine Learning Research, 2022, 162 : 23832 - 23856
  • [34] Higher-order Hamilton-Jacobi perturbation theory for anisotropic heterogeneous media: Transformation between Cartesian and ray-centred coordinates
    Iversen, Einar
    Ursin, Bjørn
    Saksala, Teemu
    Ilmavirta, Joonas
    De Hoop, Maarten V
    Geophysical Journal International, 2021, 226 (02): : 893 - 927
  • [35] Flux-limited solutions and state constraints for quasi-convex Hamilton–Jacobi equations in multidimensional domains
    Département de Mathématiques et applications, École Normale Supérieure, CNRS, PSL Research University, 45 rue d'Ulm, Paris
    75005, France
    Nonlinear Anal Theory Methods Appl, (162-177):