Stimulating the electrostatic interactions in composite cathodes using a slurry-fabricable polar binder for practical all-solid-state batteries

被引:1
|
作者
Jeong, Woo-Hyun [1 ,2 ]
Kim, Hyerim [2 ]
Kansara, Shivam [2 ]
Lee, Seungwon [2 ]
Agostini, Marco [3 ]
Kim, Kyungsu [1 ]
Hwang, Jang-Yeon [2 ,4 ]
Jung, Yun-Chae [1 ]
机构
[1] Korea Elect Technol Inst, Batteries Res Ctr, Seongnam 13509, Gyeonggi, South Korea
[2] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[3] Sapienza Univ Rome, Dept Chem & Drug Technol, Ple Aldo Moro 5, I-00185 Rome, Italy
[4] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
All-solid-state battery; Polymer binder; Composite electrode; Pouch-Type Cell; Anodeless; ELECTROLYTES; ELECTRODES; PROGRESS;
D O I
10.1016/j.ensm.2024.103855
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, poly vinylidene fluoride-chlorotrifluoroethylene (PVdF-CTFE) is introduced as a slurry-fabricable polymer binder to fabricate a stable composite cathode using the complex materials of a Li[Ni0.7Co0.1Mn0.2] O2 cathode, Li6PS5Cl electrolyte, and super C carbon, for sulfide-based all-solid-state batteries (ASSBs). The high electronegativity of fluorine in the poly(vinylidene fluoride-chlorotrifluoroethylene (PVdF-CTFE) binder creates a polarized electronic environment in the composite cathode, promoting electrostatic interactions with Li ions. Compared with that of butadiene rubber (BR), the PVdF-CTFE binder has a stronger binding energy to the complex materials in the composite cathode, which enhances the mechanical rigidity of the composite cathode with highly uniform adhesion. In addition, uniform and close contact between the complex materials in the composite cathode reduces the resistance at the interfaces, lowering the energy barrier for Li+ diffusion, and eventually creates a fast Li+ diffusion pathway in the composite cathode. Thus, the pouch-type ASSBs cell, which comprises the composite cathode with the PVdF-CTFE binder, Li6PS5Cl electrolyte sheet, and silver-carbon (Ag/ C) anodeless electrode delivers a high reversible capacity of 198.5 mAh g-1 at 0.1 C and long-term cycling stability over 300 cycles with a capacity retention of 74.5 % at 0.5 C at 60 degrees C.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The influence of void space on ion transport in a composite cathode for all-solid-state batteries
    Hlushkou, Dzmitry
    Reising, Arved E.
    Kaiser, Nico
    Spannenberger, Stefan
    Schlabach, Sabine
    Kato, Yuki
    Roling, Bernhard
    Tallarek, Ulrich
    JOURNAL OF POWER SOURCES, 2018, 396 : 363 - 370
  • [22] Influence of Lithium Ion Kinetics, Particle Morphology and Voids on the Electrochemical Performance of Composite Cathodes for All-Solid-State Batteries
    Bielefeld, Anja
    Weber, Dominik A.
    Ruess, Raffael
    Glavas, Vedran
    Janek, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
  • [23] Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications
    Kwak, Hiram
    Wang, Shuo
    Park, Juhyoun
    Liu, Yunsheng
    Kim, Kyu Tae
    Choi, Yeji
    Mo, Yifei
    Jung, Yoon Seok
    ACS ENERGY LETTERS, 2022, 7 (05): : 1776 - 1805
  • [24] Toward Practical All-Solid-State Batteries: Current Status of Functional Binders
    Mao, Caiwang
    Dong, Jingjing
    Li, Jie
    Zhai, Ximin
    Ma, Jiali
    Luan, Shuyang
    Shen, Xuefeng
    Wang, Yihe
    Zhang, Pengfei
    Sun, Huanli
    Bie, Xiaofei
    Gao, Xinyu
    Song, Jiangxuan
    ADVANCED MATERIALS, 2025,
  • [25] Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer
    Hayakawa, Eiji
    Nakamura, Hideya
    Ohsaki, Shuji
    Watano, Satoru
    ADVANCED POWDER TECHNOLOGY, 2022, 33 (08)
  • [26] Dry-film technology employing cryo-pulverized polytetrafluoroethylene binder for all-solid-state batteries
    Lee, Kyusik
    Jo, Younghoon
    Nam, Jae Seok
    Yu, Hansol
    Kim, Young -Jun
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [27] Iron Composite Anodes for Fabricating All-Solid-State Iron-Air Rechargeable Batteries
    Tsuneishi, Taku
    Esaki, Takuma
    Sakamoto, Hisatoshi
    Hayashi, Kazushi
    Kawamura, Go
    Muto, Hiroyuki
    Matsuda, Atsunori
    ADVANCED CERAMICS AND NOVEL PROCESSING, 2014, 616 : 114 - 119
  • [28] All-in-One Homogenized Sulfur/Cobalt Disulfide Composite Cathodes for Harmonious Interface All-Solid-State Lithium-Sulfur Batteries
    Fang, Ruyi
    He, Yingzuo
    Ma, Ruojian
    Ruan, Minghao
    Wang, Xinxu
    Zhang, Jun
    Gan, Yongping
    He, Xinping
    Huang, Hui
    Xia, Xinhui
    Wang, Lei
    Xiao, Zhen
    Jin, Yanxian
    Zhang, Wenkui
    Tao, Xinyong
    Xia, Yang
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (08) : 12271 - 12280
  • [29] Developing Cathode Films for Practical All-Solid-State Lithium-Sulfur Batteries
    Ye, Chao
    Xu, Shijie
    Li, Huan
    Shan, Jieqiong
    Qiao, Shi-Zhang
    ADVANCED MATERIALS, 2024,
  • [30] Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries
    Li, Liansheng
    Deng, Yuanfu
    Chen, Guohua
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 154 - 177