Stimulating the electrostatic interactions in composite cathodes using a slurry-fabricable polar binder for practical all-solid-state batteries

被引:2
作者
Jeong, Woo-Hyun [1 ,2 ]
Kim, Hyerim [2 ]
Kansara, Shivam [2 ]
Lee, Seungwon [2 ]
Agostini, Marco [3 ]
Kim, Kyungsu [1 ]
Hwang, Jang-Yeon [2 ,4 ]
Jung, Yun-Chae [1 ]
机构
[1] Korea Elect Technol Inst, Batteries Res Ctr, Seongnam 13509, Gyeonggi, South Korea
[2] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[3] Sapienza Univ Rome, Dept Chem & Drug Technol, Ple Aldo Moro 5, I-00185 Rome, Italy
[4] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
All-solid-state battery; Polymer binder; Composite electrode; Pouch-Type Cell; Anodeless; ELECTROLYTES; ELECTRODES; PROGRESS;
D O I
10.1016/j.ensm.2024.103855
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, poly vinylidene fluoride-chlorotrifluoroethylene (PVdF-CTFE) is introduced as a slurry-fabricable polymer binder to fabricate a stable composite cathode using the complex materials of a Li[Ni0.7Co0.1Mn0.2] O2 cathode, Li6PS5Cl electrolyte, and super C carbon, for sulfide-based all-solid-state batteries (ASSBs). The high electronegativity of fluorine in the poly(vinylidene fluoride-chlorotrifluoroethylene (PVdF-CTFE) binder creates a polarized electronic environment in the composite cathode, promoting electrostatic interactions with Li ions. Compared with that of butadiene rubber (BR), the PVdF-CTFE binder has a stronger binding energy to the complex materials in the composite cathode, which enhances the mechanical rigidity of the composite cathode with highly uniform adhesion. In addition, uniform and close contact between the complex materials in the composite cathode reduces the resistance at the interfaces, lowering the energy barrier for Li+ diffusion, and eventually creates a fast Li+ diffusion pathway in the composite cathode. Thus, the pouch-type ASSBs cell, which comprises the composite cathode with the PVdF-CTFE binder, Li6PS5Cl electrolyte sheet, and silver-carbon (Ag/ C) anodeless electrode delivers a high reversible capacity of 198.5 mAh g-1 at 0.1 C and long-term cycling stability over 300 cycles with a capacity retention of 74.5 % at 0.5 C at 60 degrees C.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution [J].
Adeli, Parvin ;
Bazak, J. David ;
Park, Kern Ho ;
Kochetkov, Ivan ;
Huq, Ashfia ;
Goward, Gillian R. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) :8681-8686
[2]   Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte [J].
Ates, Tugce ;
Keller, Marlou ;
Kulisch, Joern ;
Adermann, Torben ;
Passerini, Stefano .
ENERGY STORAGE MATERIALS, 2019, 17 :204-210
[3]   Lithium-ion battery separators based on electrospun PVDF: A review [J].
Bicy, K. ;
Gueye, Amadou Belal ;
Rouxel, Didier ;
Kalarikkal, Nandakumar ;
Thomas, Sabu .
SURFACES AND INTERFACES, 2022, 31
[4]   Microporous PVdF gel for lithium-ion batteries [J].
Boudin, F ;
Andrieu, X ;
Jehoulet, C ;
Olsen, II .
JOURNAL OF POWER SOURCES, 1999, 81 :804-807
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Scalable wet-slurry fabrication of sheet-type electrodes for sulfide all-solid-state batteries and performance enhancement via optimization of Ni-rich cathode coating layer [J].
Gao, Jing ;
Hao, Jinghua ;
Gao, Yuan ;
Sun, Xiaolin ;
Zhang, Yuan ;
Song, Depeng ;
Zhao, Qing ;
Zhao, Fuhua ;
Si, Wenyan ;
Wang, Kun ;
Ohsaka, Takeo ;
Matsumoto, Futoshi ;
Wu, Jianfei ;
Xie, Haijiao .
ETRANSPORTATION, 2023, 17
[7]   Wet-Processable Binder in Composite Cathode for High Energy Density All-Solid-State Lithium Batteries [J].
Hong, Seung-Bo ;
Jang, Yoo-Rim ;
Kim, Hun ;
Jung, Yun-Chae ;
Shin, Gyuhwang ;
Hah, Hoe Jin ;
Cho, Woosuk ;
Sun, Yang-Kook ;
Kim, Dong-Won .
ADVANCED ENERGY MATERIALS, 2024, 14 (35)
[8]   Challenges in speeding up solid-state battery development [J].
Janek, Juergen ;
Zeier, Wolfgang G. .
NATURE ENERGY, 2023, 8 (03) :230-240
[9]   Ni-Rich Layered Cathode Materials with Electrochemo-Mechanically Compliant Microstructures for All-Solid-State Li Batteries [J].
Jung, Sung Hoo ;
Kim, Un-Hyuck ;
Kim, Jae-Hyung ;
Jun, Seunggoo ;
Yoon, Chong S. ;
Jung, Yoon Seok ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2020, 10 (06)
[10]   On-site formation of silver decorated carbon as an anodeless electrode for high-energy density all-solid-state batteries [J].
Jung, Yun-Chae ;
Hwang, Chihyun ;
Kwak, Myung-Jun ;
Jeon, Sang-Jin ;
Lee, Yun Jung ;
Kwak, Won-Jin ;
Kim, Hyun-Seung ;
Kim, KyungSu ;
Cho, Woosuk ;
Yu, Ji-Sang .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (46) :25275-25282