Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction

被引:0
|
作者
Ye, Dingqi [1 ,2 ]
Peng, Jian [2 ,3 ]
Guo, Wang [1 ,2 ]
Li, Haifeng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Xiangjiang Lab, Changsha 410205, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Remote sensing; Adaptation models; Computer architecture; Kernel; Computational modeling; Accuracy; Image coding; Representation learning; Compact representation learning; multiscale information augmentation learning; parameter-scale overload; remote sensing image (RSI) feature extraction; BENCHMARK;
D O I
10.1109/TGRS.2024.3490666
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model's compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model's feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method's proficiency in acquiring detailed and accurate subject information from RSIs.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Remote Sensing Image Super-Resolution via Multiscale Enhancement Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Wu, Changzhi
    Wang, Jiaming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [12] A Lightweight Multiscale Feature Fusion Network for Remote Sensing Object Counting
    Yi, Jun
    Shen, Zhilong
    Chen, Fan
    Zhao, Yiheng
    Xiao, Shan
    Zhou, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [13] MSHFormer: A Multiscale Hybrid Transformer Network With Boundary Enhancement for VHR Remote Sensing Image Building Extraction
    Zhu, Panpan
    Song, Zhichao
    Liu, Jiale
    Yan, Jiazheng
    Luo, Xiaobo
    Tao, Yuxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [14] A Multiscale Incremental Learning Network for Remote Sensing Scene Classification
    Ye, Zhen
    Zhang, Yu
    Zhang, Jinxin
    Li, Wei
    Bai, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [15] Remote sensing image feature extraction and classification based on contrastive learning method
    Mu X.-D.
    Bai K.
    You X.-A.
    Zhu Y.-Q.
    Chen X.-B.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (09): : 2222 - 2234
  • [16] Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network
    Xiang, Shao
    Xie, Quangqi
    Wang, Mi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [17] Multiscale Multiinteraction Network for Remote Sensing Image Captioning
    Wang, Yong
    Zhang, Wenkai
    Zhang, Zhengyuan
    Gao, Xin
    Sun, Xian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2154 - 2165
  • [18] Automatic Recognition of Tunnel Water Leakage Based on Adaptive Information Extraction Network and Multiscale Feature Enhancement Module
    Wang, Dandan
    Hou, Gongyu
    Chen, Qinhuang
    Li, Weiyi
    Li, Haoxiang
    Shao, Yaohua
    Yu, Xunan
    IEEE ACCESS, 2024, 12 : 192586 - 192602
  • [19] Object Detection For Remote Sensing Image Based on Multiscale Feature Fusion Network
    Tian Tingting
    Yang Jun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [20] CSA-Net: An Adaptive Binary Neural Network and Application on Remote Sensing Image Classification
    Gao, Weifeng
    Tan, Menghao
    Li, Hong
    Xie, Jin
    Gao, Xiaoli
    Gong, Maoguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62