共 50 条
Process intensification in the direct contact membrane distillation (DCMD) desalination by patterning membrane surface: A CFD study
被引:1
|作者:
Zare, Sahar
[1
]
Kargari, Ali
[2
]
机构:
[1] Amirkabir Univ Technol, Petrochem Engn Dept, Tehran Polytech, Mahshahr Campus,POB 415, Mahshahr, Iran
[2] Amirkabir Univ Technol, Dept Chem Engn, Membrane Proc Res Lab MPRL, Tehran Polytech, Hafez Ave,POB 15875-4413, Tehran, Iran
关键词:
Patterned membrane;
DCMD;
Computational fluid dynamics;
Polarization;
Prism pattern;
Water flux;
OF-THE-ART;
MASS-TRANSFER;
PARTICLE DEPOSITION;
CONCENTRATION POLARIZATION;
WATER DESALINATION;
SIMULATION;
TRANSPORT;
FLUX;
ENHANCEMENT;
TEMPERATURE;
D O I:
10.1016/j.cep.2024.110027
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
In this research, the impact of pattern geometry on the intensification of the performance of surface patterned membranes for saline water desalination by direct contact membrane distillation (DCMD) is investigated by computational fluid dynamics (CFD) simulation. The Comsol Multiphysics software was applied to solve the governing transport equations for heat, momentum, and mass transfer. The result of the model was validated by the published experimental data, and the maximum deviation was <10 %. The target was to maximize the permeate flux by altering surface pattern geometry and dimensions. Based on the previous studies, a prism pattern was chosen in this work, and the influences of pattern type (3 types), pattern dimension (25-150 <mu>m valley depth), and the distance between the valleys (0-400 mu m) were studied on the temperature polarization coefficient (TPC) and DCMD permeate flux. The results showed that the pattern with a valley depth of 25 mu m and a distance between the valleys of 300 mu m had the best performance in DCMD operation. In this situation and feed temperature of 80 degrees C, a TPC of 0.78 and a water flux of 49.3 kg m(-12).h were attained. The characteristics of flow close to the patterned membrane surface were also investigated, and it was observed that there are weak shear stresses in the lower zone of the valleys, while stronger shear stresses are created in the upper regions that are responsible for improving the TPC and water flux in the patterned membranes.
引用
收藏
页数:19
相关论文