On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems\ast

被引:0
作者
Gasull, Armengol [1 ,2 ]
Rondon, Gabriel [3 ]
da Silva, Paulo Ricardo [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edif C, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Campus Bellaterra, Barcelona 08193, Spain
[3] Sao Paulo State Univ Unesp, Inst Biosci Humanities & Exact Sci, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2024年 / 23卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
piecewise polynomial holomorphic system; limit cycles; averaging method; Lyapunov quantities; Poincare'; --Miranda theorem; BIFURCATION;
D O I
10.1137/23M1620922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with determining lower bounds of the number of limit cycles for piecewise polynomial holomorphic systems with a straight line of discontinuity. We approach this problem with different points of view. Initially, we study the number of zeros of the first- and second order averaging functions. We also use the Lyapunov quantities to produce limit cycles appearing from a monodromic equilibrium point via a degenerated Andronov--Hopf type bifurcation, adding at the very end the sliding effects. Finally, we use the Poincare'\--Miranda theorem for obtaining an explicit piecewise linear holomorphic system with 3 limit cycles, a result that improves the known examples in the literature that had a single limit cycle.
引用
收藏
页码:2593 / 2622
页数:30
相关论文
共 34 条
  • [1] Acary V., 2011, Lecture Notes in Electrical Engineering, V69
  • [2] Andronov A.A., 1973, Theory of bifurcations of dynamic systems on a plane
  • [3] [Anonymous], 2000, Lecture Notes in Math.
  • [4] Batchelor G. K., 1967, INTRO FLUID DYNAMICS
  • [5] Berezin I.S. e., 1965, Computing Methods, V2
  • [6] Brogliato B, 2016, COMMUN CONTROL ENG, P1, DOI 10.1007/978-3-319-28664-8
  • [7] Uniform upper bound for the number of limit cycles of planar piecewise linear differential systems with two zones separated by a straight line
    Carmona, Victoriano
    Fernandez-Sanchez, Fernando
    Novaes, Douglas D.
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 137
  • [8] Chorin A., 1979, A Mathematical Introduction to Fluid Mechanics
  • [9] A Note on the Lyapunov and Period Constants
    Cima, A.
    Gasull, A.
    Manosas, F.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [10] Coll B, 2005, DYNAM CONT DIS SER A, V12, P275