Bimetallic ions pre-intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries

被引:8
|
作者
Hu, Bingbing [1 ]
Yang, Xinyao [1 ,4 ]
Li, Dongshan [1 ]
Luo, Liang [3 ]
Jiang, Jiayu [1 ]
Du, Tianlun [1 ]
Pu, Hong [2 ]
Ma, Guangqiang [2 ]
Xiang, Bin [3 ]
Li, Zhi [1 ]
机构
[1] Chongqing Jiaotong Univ, China Spain Collaborat Res Ctr Adv Mat, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Panzhihua Univ, Sichuan Vanadium Titanium Mat Engn Technol Res Ctr, Panzhihua 617000, Sichuan, Peoples R China
[3] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 401331, Peoples R China
[4] Sichuan Changhong Battery Co LTD, Mianyang 62100, Sichuan, Peoples R China
关键词
Metal ions; Intercalation; Vanadium oxides; Electrochemical properties; Aqueous zinc-ion battery; PENTOXIDE;
D O I
10.1016/j.jallcom.2024.176801
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new generation of rechargeable batteries known as Aqueous Zinc-Ion Batteries (AZIB) offers benefits including affordability, eco-friendliness, dependability, and safety. Hydrated vanadium oxides (V2O5 center dot nH2O) show potential as cathodes for AZIB due to their layered structure and multivalent properties. However, the zinc storage performance is limited by the structural instability and slow zinc ion mobility. In this work, TiK-VOH (the bimetallic ions system of Ti4+ and K+ co-pre-intercalated in V2O5 center dot nH2O) with lamellar fish scale-like structure is synthesized using a simple sol-gel method. The high positive charge density of the tetravalent Ti4+ is more beneficial to attract the electrons in the V-O layer and regulate the layer spacing (12.1 & Aring;), which not only improves the diffusion kinetics of zinc ions, but also acts as a pillar to stabilize the layer structure. K+ mainly plays the role of improving electrical conductivity, and then accelerates the charge transfer in the electrode reaction process. Auxiliary density functional theory simulation further confirms that the diffusion energy barrier and Fermi level are optimized by pre-intercalating bimetallic ions. Based on the synergistic effect of Ti4+ and K+, the TiK-VOH material shows excellent zinc storage performance, the highest specific capacity of TiK-VOH reaches 393.4 mAh g- 1 at a current density of 0.2 A g- 1, even at 10 A g- 1 (increased by 20 times), it still maintains a discharge specific capacity of 202 mAh g- 1 with a capacity retention rate of 94 % after 2000 cycles, the overall performance is much better than the Ti-VOH and K-VOH. This work offers an alternative perspective for the modification of vanadium-based cathode of AZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Ying Guo
    Yang Liu
    Kai Li
    Yun Gong
    Journal of Solid State Electrochemistry, 2023, 27 : 2579 - 2592
  • [42] Al3+ Introduction Hydrated Vanadium Oxide Induced High Performance for Aqueous Zinc-Ion Batteries
    Xu, Jing
    Zhang, Yu
    Liu, Chenfan
    Cheng, Huanhuan
    Cai, Xuanxuan
    Jia, Dianzeng
    Lin, He
    SMALL, 2022, 18 (47)
  • [43] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [44] Naphthoquinone-intercalated vanadium oxide for high-performance zinc-ion battery
    Guo, Ying
    Liu, Yang
    Li, Kai
    Gong, Yun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (10) : 2579 - 2592
  • [45] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [46] Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries
    Jin, Tao
    Ye, Xiling
    Chen, Zhuo
    Bai, Shuai
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4729 - 4740
  • [47] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)
  • [48] Amorphous Vanadium Oxides with Dual ion Storage Mechanism for High-Performance Aqueous Zinc ion Batteries
    Ma, Yandong
    Cao, Weinan
    Liu, Yonghang
    Li, Qiulin
    Cai, Shinan
    Bao, Shu-juan
    Xu, Maowen
    SMALL, 2024, 20 (19)
  • [49] Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries
    Xu, Yilong
    Shao, Fei
    Huang, Yongfeng
    Huang, Xudong
    Jiang, Fuyi
    Kang, Feiyu
    Liu, Wenbao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 226 - 235
  • [50] Mn pre-intercalated hydrated vanadium pentoxide activated by nitrogen plasma for enhanced zinc ion storage
    Qian, Jinchen
    You, Yurong
    Fan, Zixuan
    Liu, Xingyu
    Tang, Jun
    He, Wei
    Sun, ZhengMing
    JOURNAL OF ENERGY STORAGE, 2023, 63