Efficient and stable perovskite solar cells based on multi-active sites 5-amino-1,3,4-thiadiazole-2-thiol modified interface

被引:0
作者
Xu, Jing [1 ]
Wu, Jihuai [1 ]
Zheng, Qingshui [1 ]
Gao, Lin [1 ]
Tang, Sheng [1 ]
Yu, Fuda [1 ]
Sun, Weihai [1 ]
Lan, Zhang [1 ]
机构
[1] Huaqiao Univ, Coll Mat Sci & Engn, Engn Res Ctr Environm Friendly Funct Mat, Minist Educ, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Interfacial passivation; 5-Amino-1,3,4-thiadiazole-2-thiol (AMTD); Multi-active sites; STABILITY; PASSIVATION; PERFORMANCE; PHOTOLUMINESCENCE; CRYSTAL;
D O I
10.1016/j.mtphys.2024.101564
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The highest certification efficiency of perovskite solar cells (PSCs) has reached 26.7 %. However, the high defect density on the surface of perovskite films prepared by low temperature solution method and the energy mismatch between the carrier transport layers and perovskite layer (PVK) greatly limit the performance improvement of PSCs. The introduction of passivating agent to modify the perovskite interface and grain boundary can reduce the defect density, coordinate the energy level effectively, and improve the efficiency and stability of devices. A Lewis base molecule 5-amino-1,3,4-thiadiazole-2-thiol (AMTD) with multiple active sites is introduced at the interface between PVK and hole transport layer (HTL). The electron-rich groups, such as = S, -S-, -NH2, -N on AMTD, passivate the positive electrical defects on the interface and grain boundary, and increase carrier transport efficiency. The interfacial energy level array is optimized to achieve more efficient charge transportation. In addition, the modified of AMTD has a significant protective effect on the perovskite, which inhibit the moisture erosion of in environment. Consequently, the AMTD-optimized device achieves a power conversion efficiency (PCE) of 24.13 %, compared to the efficiency of 21.62 % for pristine device. The stability of the devices is improved greatly.
引用
收藏
页数:11
相关论文
共 34 条
  • [21] Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering
    Ran, Chenxin
    Xu, Jiantie
    Gao, Weiyin
    Huang, Chunmao
    Dou, Shixue
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (12) : 4581 - 4610
  • [22] Bridging the buried interface with conjugated molecule for highly efficient carbon-based inorganic CsPbI2Br perovskite solar cells fabricated in air
    Shi, Yifei
    Zhang, Lei
    Hu, Shuming
    Wang, Xu
    Han, Jiajia
    Huang, Jincheng
    Chen, Junjie
    Zhang, Yuanfang
    Zhang, Xinlong
    He, Jintao
    Zuo, Hengzhi
    Ju, Jiayao
    Wu, Zihan
    Zhao, Wei
    Zeng, Yuxi
    Zou, Yu
    Liao, Kai
    Yang, Ruoxi
    Ye, Wenxia
    Gu, Yongjie
    Gong, Li
    Fan, Shaosheng
    Peng, Zhuoyin
    Chen, Jianlin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [23] A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells
    Wang, Ligang
    Zhou, Huanping
    Hu, Junnan
    Huang, Bolong
    Sun, Mingzi
    Dong, Bowei
    Zheng, Guanghaojie
    Huang, Yuan
    Chen, Yihua
    Li, Liang
    Xu, Ziqi
    Li, Nengxu
    Liu, Zheng
    Chen, Qi
    Sun, Ling-Dong
    Yan, Chun-Hua
    [J]. SCIENCE, 2019, 363 (6424) : 265 - +
  • [24] Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells
    Wang, Rui
    Xue, Jingjing
    Meng, Lei
    Lee, Jin-Wook
    Zhao, Zipeng
    Sun, Pengyu
    Cai, Le
    Huang, Tianyi
    Wang, Zhengxu
    Wang, Zhao-Kui
    Duan, Yu
    Yang, Jonathan Lee
    Tan, Shaun
    Yuan, Yonghai
    Huang, Yu
    Yang, Yang
    [J]. JOULE, 2019, 3 (06) : 1464 - 1477
  • [25] Lewis Base Passivation Mediates Charge Transfer at Perovskite Heterojunctions
    Westbrook, Robert J. E.
    Macdonald, Thomas J.
    Xu, Weidong
    Lanzetta, Luis
    Marin-Beloqui, Jose M.
    Clarke, Tracey M.
    Haque, Saif A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (31) : 12230 - 12243
  • [26] Trap-Assisted Non-Radiative Recombination in Organic-Inorganic Perovskite Solar Cells
    Wetzelaer, Gert-Jan A. H.
    Scheepers, Max
    Miquel Sempere, Araceli
    Momblona, Cristina
    Avila, Jorge
    Bolink, Henk J.
    [J]. ADVANCED MATERIALS, 2015, 27 (11) : 1837 - +
  • [27] Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces
    Wolff, Christian M.
    Caprioglio, Pietro
    Stolterfoht, Martin
    Neher, Dieter
    [J]. ADVANCED MATERIALS, 2019, 31 (52)
  • [28] Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically
    Wu, Yihui
    Wang, Qi
    Chen, Yuting
    Qiu, Wuke
    Peng, Qiang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (11) : 4700 - 4709
  • [29] Xiao ZG, 2015, NAT MATER, V14, P193, DOI [10.1038/nmat4150, 10.1038/NMAT4150]
  • [30] A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%
    Xie, Lisha
    Liu, Jian
    Li, Jun
    Liu, Chang
    Pu, Zhenwei
    Xu, Peng
    Wang, Yaohua
    Meng, Yuanyuan
    Yang, Mengjin
    Ge, Ziyi
    [J]. ADVANCED MATERIALS, 2023, 35 (38)