Room-Temperature Ferromagnetism with Strong Spin-Orbit Coupling Achieved in CaRuO3 Interfacial Phase via Magnetic Proximity Effect

被引:0
|
作者
Zheng, Jie [1 ,2 ,3 ]
Zhang, Jing [4 ]
Cheng, Sheng [5 ]
Shi, Wenxiao [1 ,3 ]
Wang, Mengqin [1 ,3 ]
Li, Zhe [1 ,3 ]
Chen, Yunzhong [1 ,3 ]
Hu, Fengxia [1 ,3 ,4 ]
Shen, Baogen [1 ,3 ,6 ,7 ]
Chen, Yuansha [1 ,3 ]
Zhu, Tao [1 ,5 ]
Sun, Jirong [1 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[5] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[6] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[7] Chinese Acad Sci, Ganjiang Innovat Acad, Ganzhou 341000, Jiangxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 美国国家科学基金会;
关键词
oxide heterostructure; interfacial ferromagnetism; magnetic proximity effect; spin-orbit coupling; antiferromagnetic interaction; TORQUE; SYMMETRY;
D O I
10.1021/acsnano.4c10014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, theoretical and experimental research predicted that ferromagnets with strong spin-orbit coupling (SOC) could serve as spin sources with dramatically enhanced spin-orbit torque (SOT) efficiency due to the combination of spin Hall effect and anomalous Hall effect (AHE), presenting potential advantages over conventional nonmagnetic heavy metals. However, materials with a strong SOC and room-temperature ferromagnetism are rare. Here, we report on a ferromagnetic (FM) interfacial phase with Curie temperature exceeding 300 K in the heavy transition-metal oxide CaRuO3, in proximity to La0.67Sr0.33MnO3. Electron energy loss and polarized neutron reflectometry spectra reveal the strong charge transfer from Ru to Mn at the interface, triggering antiferromagnetic exchange interactions between interfacial Ru/Mn ions and thus transferring magnetic order from La0.67Sr0.33MnO3 to CaRuO3. An obvious advantage of such interfacial phase is the enhanced anomalous Hall effect at temperatures from 150 to 300 K. Compared to the most promising room-temperature ferromagnetic oxide La0.67Sr0.33MnO3, the anomalous Hall conductivity sigma xy AHE (or anomalous Hall angle theta H) of CaRuO3/La0.67Sr0.33MnO3 superlattices is increased by 30 (or 31) times at 150 K and 10 (or 3) times at 300 K. This work demonstrates a special approach for inducing ferromagnetism in heavy transition-metal oxides with strong SOC, offering promising prospects for all-oxide-based spintronic applications.
引用
收藏
页码:32625 / 32634
页数:10
相关论文
共 5 条
  • [1] Room-temperature phosphorescence luminophores design with enhanced spin-orbit coupling through heavy atom effect
    Gao, Ying
    Wang, Jia
    Sun, Chenglin
    Su, Tan
    CHEMICAL PHYSICS, 2023, 573
  • [2] Purely Organic Room-Temperature Phosphorescence Endowing Fast Intersystem Crossing from Through-Space Spin-Orbit Coupling
    Yu, Jie
    Ma, Huili
    Huang, Wenbin
    Liang, Zhiwei
    Zhou, Kang
    Lv, Anqi
    Li, Xin-Gui
    He, Zikai
    JACS AU, 2021, 1 (10): : 1694 - 1699
  • [3] Spin-orbit coupling effect on pressure-induced phase transitions, magnetic, and electronic properties in YFeO3: A first-principles study
    Xing, Zhang-Yao
    Kuang, Xiao-Yu
    Mao, Ai-Jie
    Tian, Hao
    Yu, Miao
    Cui, Yingqi
    Qiu, Jia-Si
    CHEMICAL PHYSICS, 2022, 555
  • [4] EFFECT OF SPIN-ORBIT COUPLING ON THE MAGNETIC SUSCEPTIBILITY OF POLYNUCLEAR COMPLEXES OF 3d METALS CONTAINING A Co2+ ION
    Litvinenko, A. S.
    Mikhaleva, E. A.
    Kolotilov, S. V.
    Pavlishchuk, V. V.
    THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2011, 46 (06) : 422 - 428
  • [5] Topological Phase Control of Surface States in Bi2Se3 via Spin-Orbit Coupling Modulation through Interface Engineering between HfO2-X
    Jeong, Kwangsik
    Park, Hanbum
    Chae, Jimin
    Sim, Kyung-Ik
    Yang, Won Jun
    Kim, Jong-Hoon
    Hong, Seok-Bo
    Kim, Jae Hoon
    Cho, Mann-Ho
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) : 12215 - 12226