Experimental study on the effects of temperature on mechanical properties of 3D printed continuous carbon fiber reinforced polymer (C-CFRP) composites

被引:5
|
作者
Jia, Xiaohang [1 ]
Luo, Junjie [1 ]
Luo, Quantian [1 ]
Li, Qing [2 ]
Pang, Tong [1 ,3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Technol Vehicle, Changsha 410082, Peoples R China
[2] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[3] Hunan Univ, Innovat Inst Ind Design & Machine Intelligence Qua, Quanzhou 362006, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Additive manufacturing; Effects of temperature; Fracture mechanism; Continuous carbon fiber reinforced polymer (C-CFRP); Rule of mixtures; THERMOPLASTIC COMPOSITES; TENSILE; PREDICTION; BEHAVIOR; DEFORMATION; FABRICATION; TRANSVERSE; STRENGTH; DAMAGE;
D O I
10.1016/j.tws.2024.112465
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Design for safety of 3D printed continuous carbon fiber reinforced polymer (CCFRP) composites remains challenging for accommodating harsh service environments with a wide range of temperatures. To investigate thermal effects on mechanical properties and failure mechanism of CCFRP materials, this study carried out a series of experimental tests on the laminates with layups of [0](n), [90](n) and [0/90](n) for tension, as well as [+/- 45](n) for in-plane shearing. The application of classical laminate theory and rule of mixtures to the 3D printed CCFRP composites under varying temperatures is then evaluated. The results indicate that the transverse elastic modulus/strength and in-plane shear modulus/strength increase at a low temperature, but all the mechanical properties decrease at a high temperature. Notably, an unexpected decrease in strength of [0/90](n) laminates is observed when the temperature drops from -10 degrees C to -40 degrees C. Significant strain concentrations are visualized during tensile experiments at high temperature through the digital image correlation (DIC) technique. With increasing temperature, the [0](n) laminates undergo a transition from an explosive to a jagged failure mode, while the [90](n) laminates shift from brittle to ductile failure. The alteration is attributed to decrease in the mechanical properties of both the matrix and the matrix fiber interface, as revealed by scanning electron microscopy (SEM) analysis. It is found that although the classical laminate theory exhibits an acceptable prediction accuracy for the 3D printed CCFRP composites under varying temperature conditions, the rule of mixtures is not applicable. For this reason, the new formulations for the rule of mixtures are then proposed to enable accurate predictions for 3D printed CCFRP composites under different temperatures. This study is anticipated to provide insightful understanding on mechanical properties and failure mechanisms for 3D printed CCFRP composites at different temperatures.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mechanical and self-sensing properties of 3D printed continuous carbon fiber reinforced composites
    Ye, Wenguang
    Dou, Hao
    Cheng, Yunyong
    Zhang, Dinghua
    Lin, Sheng
    POLYMER COMPOSITES, 2022, 43 (10) : 7428 - 7437
  • [2] Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites
    Li, Lijun
    Liu, Wenyao
    Sun, Lingyu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
  • [3] MECHANICAL FINISHING OF 3D PRINTED CONTINUOUS CARBON FIBER REINFORCED POLYMER COMPOSITES VIA CNC MACHINING
    Parandoush, Pedram
    Deines, Timothy
    Lin, Dong
    Zhang, Hao
    Ye, Chang
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [4] Mechanical characterization of 3D printed multiscale carbon nanofiller/continuous fiber reinforced polymer hybrid composites
    Li, Jia
    Wang, Chao
    Fu, Yu-Tong
    Xia, Dan
    Xu, Ping-Hai
    Xiang, Cheng-Tao
    Wu, Jing
    Li, Jia-Yu
    Li, Yuan-Qing
    Li, Fei
    Shi, Han-Qiao
    Sun, Bao-Gang
    Fu, Shao-Yun
    POLYMER COMPOSITES, 2025,
  • [5] A multiscale study of heat treatment effects on the interlayer mechanical properties of 3D printed continuous carbon fiber-reinforced composites
    Zhu, Wanying
    Li, Shixian
    Long, Hongmei
    Wang, Kui
    Rao, Yanni
    Peng, Yong
    Ahzi, Said
    POLYMER COMPOSITES, 2024, 45 (05) : 3918 - 3930
  • [6] Investigating the fatigue and mechanical behaviour of 3D printed woven and nonwoven continuous carbon fibre reinforced polymer (CFRP) composites
    Ekoi, Emmanuel J.
    Dickson, Andrew N.
    Dowling, Denis P.
    COMPOSITES PART B-ENGINEERING, 2021, 212
  • [7] Experimental Quantification of the Variability of Mechanical Properties in 3D Printed Continuous Fiber Composites
    Becker, Clarissa
    Oberlercher, Hannes
    Heim, Rosmarie Brigitte
    Wuzella, Guenter
    Faller, Lisa-Marie
    Riemelmoser, Franz Oswald
    Nicolay, Pascal
    Druesne, Frederic
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [8] Longitudinal compression failure of 3D printed continuous carbon fiber reinforced composites: An experimental and computational study
    Tang, Haibin
    Sun, Qingping
    Li, Ziang
    Su, Xuming
    Yan, Wentao
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 146
  • [9] Thermal and Mechanical Characterization of 3D Printed Continuous Fiber Reinforced Composites
    Abbott, Andrew C.
    Furmanski, Jevan
    Tandon, G. P.
    Koerner, Hilmar
    Butcher, Dennis
    SAMPE JOURNAL, 2023, 59 (06) : 20 - 30
  • [10] Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites
    Wang, Kui
    Long, Hongmei
    Chen, Ying
    Baniassadi, Majid
    Rao, Yanni
    Peng, Yong
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 147