Techno-economic assessment of integrated spectral-beam-splitting photovoltaic-thermal (PV-T) and organic Rankine cycle (ORC) systems

被引:0
|
作者
Peacock, Joshua [1 ]
Huang, Gan [1 ]
Song, Jian [1 ]
Markides, Christos N. [1 ]
机构
[1] Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London,SW7 2AZ, United Kingdom
基金
英国工程与自然科学研究理事会;
关键词
Cogeneration plants - Costs - Optical properties - Rankine cycle - Solar collectors - Solar power generation;
D O I
暂无
中图分类号
学科分类号
摘要
Promising solar-based combined heating and power (CHP) systems are attracting increasing attention thanks to the favourable characteristics and flexible operation. For the first time, this study explores the potential of integrating a novel spectral-beam-splitting (SBS), hybrid photovoltaic-thermal (PVT) collector and organic Rankine cycle (ORC) technologies to maximise solar energy utilisation for electricity generation, while also providing hot water/space heating to buildings. In the proposed collector design, a parabolic trough concentrator (PTC) directs light to a SBS filter. The filter reflects long wavelengths to an evacuated tube absorber (ETA), which is thermally decoupled from the cells in the PVT tube, subsequently enabling a high-temperature fluid stream to be provided by the ETA to an ORC sub-system for secondary power generation. The SBS filter's optical properties are a key determinant of the system's performance, with maximum electricity generation attained when the filter transmits wavelengths between 485 and 860 nm onto the PVT tube, while the light outside this range is reflected onto the ETA. The effect of key design parameters and system capacity on techno-economic performance is investigated, considering Spain (Sevilla), the UK (London) and Oman (Muscat) as locations to capture climate and economic impacts. When operated for maximum electricity generation, the combined system achieves a ratio of heat to power of ∼1.3, which is comparable to conventional CHP systems. Of the total incident solar energy, 24% and 31% is respectively converted to useful electricity and heat, with 54% of the electricity being generated by the PV cells. In Spain, the UK and Oman, respective electricity generation of 1.8, 0.9 and 2.1 kWhel/day per m2 of PTC area is achieved. Energy prices are found to be pivotal for ensuring viable payback times, with attractive payback times as low as 4–5 years obtained in the case of Spain at system capacities over 2.7 kWel. Integrating the ORC sub-system with the concentrating SBS-PVT collector design reduced the levelised cost of electricity (LCOEel). A LCOEel of 0.10 £/kWh is attained in Spain at an electrical capacity of only 4 kWel, demonstrating the significant potential of exploiting the proposed systems in practical applications, as highly competitive with established combustion-based CHP systems. © 2022
引用
收藏
相关论文
共 24 条
  • [1] Techno-economic assessment of integrated spectral-beam-splitting photovoltaic-thermal (PV-T) and organic Rankine cycle (ORC) systems
    Peacock, Joshua
    Huang, Gan
    Song, Jian
    Markides, Christos N.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [2] Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage
    Patil, Vikas R.
    Biradar, Vijay Irappa
    Shreyas, R.
    Garg, Pardeep
    Orosz, Matthew S.
    Thirumalai, N. C.
    RENEWABLE ENERGY, 2017, 113 : 1250 - 1260
  • [3] Techno-economic survey of Organic Rankine Cycle (ORC) systems
    Quoilin, Sylvain
    Van den Broek, Martijn
    Declaye, Sebastien
    Dewallef, Pierre
    Lemort, Vincent
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 22 : 168 - 186
  • [4] Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems
    Baral, Suresh
    Sebo, Juraj
    HELIYON, 2024, 10 (04)
  • [5] Environmental Life-Cycle Assessment and Techno-Economic Analysis of Photovoltaic (PV) and Photovoltaic/Thermal (PV/T) Systems
    Mahmud, M. A. Parvez
    Huda, Nazmul
    Farjana, Shahjadi Hisan
    Lang, Candace
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [6] Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems
    Gan Huang
    Kai Wang
    Christos N. Markides
    Light: Science & Applications, 10
  • [7] Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems
    Huang, Gan
    Wang, Kai
    Markides, Christos N.
    LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [8] Techno-economic and environmental assessment of a photovoltaic-thermal (PV-T) solar dryer for habanero chili (Capsicum chinense): 4E (energy, economic, embodied and environmental) analysis
    Ceballos, Leslie A. Valencia
    Lopez-Vidana, Erick Cesar
    Romero-Perez, Claudia K.
    Escobedo-Bretado, Jorge
    Garcia-Valladares, Octavio
    Dominguez, Ignacio R. Martin
    RENEWABLE ENERGY, 2025, 245
  • [9] A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle
    Huang, Y.
    Wang, Y. D.
    Rezvani, S.
    McIlveen-Wright, D. R.
    Anderson, M.
    Mondol, J.
    Zacharopolous, A.
    Hewitt, N. J.
    APPLIED THERMAL ENGINEERING, 2013, 53 (02) : 325 - 331
  • [10] Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock
    Asaee, S. Rasoul
    Nikoofard, Sara
    Ugursal, V. Ismet
    Beausoleil-Morrison, Ian
    ENERGY AND BUILDINGS, 2017, 152 : 667 - 679