Advances of carbon-based materials for activating peracetic acid in advanced oxidation processes: A review

被引:4
|
作者
Qiao, Chenghuan [1 ]
Jia, Wenrui [1 ]
Tang, Jingrui [1 ]
Chen, Chuchu [1 ]
Wu, Yaohua [1 ]
Liang, Yongqi [1 ]
Du, Juanshan [2 ]
Wu, Qinglian [1 ]
Feng, Xiaochi [3 ]
Wang, Huazhe [1 ]
Guo, Wan-Qian [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Korea Inst Energy Technol KENTECH, Dept Energy Engn, Naju 58330, South Korea
[3] Harbin Inst Technol Shenzhen, Sch Civil & Environm Engn, State Key Lab Urban Water Resource & Environm, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Carbon-based material; Peracetic acid; Heteroatom doping; Advanced oxidation process; Recalcitrant organic pollutants; REDUCED GRAPHENE OXIDE; WASTE-WATER TREATMENT; BISPHENOL-A; DEGRADATION; PEROXYMONOSULFATE; CO; PERSULFATE; ADSORPTION; 2,4-DICHLOROPHENOL; MECHANISM;
D O I
10.1016/j.envres.2024.120058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.
引用
收藏
页数:13
相关论文
empty
未找到相关数据