A Generalisation of Maximal (k,b)-Linear-Free Sets of Integers

被引:0
|
作者
Minh, Nguyen Quang [1 ]
机构
[1] University of Cambridge, Trinity College, Cambridge
来源
Journal of Combinatorial Mathematics and Combinatorial Computing | 2024年 / 120卷
关键词
Integer; Maximal;
D O I
10.61091/jcmcc120-28
中图分类号
学科分类号
摘要
Fix integers k, b, q with k ≥ 2, b ≥ 0, q ≥ 2. Define the function p to be: p(x) = kx+b. We call a set S of integers (k, b, q)-linear-free if x ∈ S implies pi(x) ∉ S for all i = 1, 2, . . . , q - 1, where pi(x) = p ( pi-1(x) ) and p0(x) = x. Such a set S is maximal in [n] := {1, 2, . . . , n} if S ∪ {t}, ∀t ∈ [n]S is not (k, b, q)-linear-free. Let Mk,b,q(n) be the set of all maximal (k, b, q)-linear-free subsets of [n], and define gk,b,q(n) = minS ∈Mk,b,q(n) |S | and fk,b,q(n) = maxS ∈Mk,b,q(n) |S |. In this paper, formulae for gk,b,q(n) and fk,b,q(n) are proposed. Also, it is proven that there is at least one maximal (k, b, q)-linear-free subset of [n] with exactly x elements for any integer x between gk,b,q(n) and fk,b,q(n), inclusively. © 2024 the Author(s).
引用
收藏
页码:315 / 321
页数:6
相关论文
共 6 条
  • [1] Maximal Lattice-Free Convex Sets in Linear Subspaces
    Basu, Amitabh
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (03) : 704 - 720
  • [2] ON MAXIMAL S-FREE CONVEX SETS
    Moran R, Diego A.
    Dey, Santanu S.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (01) : 379 - 393
  • [3] Maximal sets of hamilton cycles in K2p-F
    Fu, H. L.
    Logan, S. L.
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2822 - 2829
  • [4] Three questions of Bertram on locally maximal sum-free sets
    Chimere Stanley Anabanti
    Applicable Algebra in Engineering, Communication and Computing, 2019, 30 : 127 - 134
  • [5] Three questions of Bertram on locally maximal sum-free sets
    Anabanti, Chimere Stanley
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (02) : 127 - 134
  • [6] Groups containing locally maximal product-free sets of size 4
    Anabanti, C. S.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 31 (02): : 167 - 194