Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes

被引:2
作者
Makino D. [1 ]
Ueki A. [1 ]
Matsumoto H. [2 ]
Nagamine K. [1 ,2 ]
机构
[1] Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yamagata 992-8510, Yonezawa
[2] Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yamagata 992-8510, Yonezawa
关键词
Bacteria; Electrical stimulation; Membrane potential; PEDOT;
D O I
10.1016/j.bioelechem.2022.108290
中图分类号
学科分类号
摘要
This paper proposes a minimally invasive current-controlled electric stimulation system based on a poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode to characterize the dynamics of the membrane potential in Bacillus subtilis. A highly capacitive PEDOT-modified electrode enabled the injection of a large ionic charge to the surface of the cells suppressing cytotoxic pH change in the vicinity of the electrode. The current pulse induced a hyperpolarization response in B. subtilis around the electrode. Using quantitative charge injection through current-controlled electrical stimulation, the threshold charge density to excite B. subtilis was roughly estimated to be 530.8 µC cm−2 (of electrode surface area) for the first time. Our results provide the minimum electrical stimulation conditions necessary to minimal invasively control the bacterial membrane potential. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 37 条
  • [1] Brocker D.T., Grill W.M., Principle of electrical stimulation of neural tissue, Handbook, Clin. Neurol., 116, pp. 3-18, (2013)
  • [2] Marszalek P., Liu D.S., Tsong T.Y., Schwan equation and transmembrane potential induced by alternating electric field, Biophys. J., 58, 4, pp. 1053-1058, (1990)
  • [3] Noguchi A., Ikegaya Y., Matsumoto N., In vivo whole-cell patch-clamp methods: Recent technical progress and future perspectives, Sensors, 21, 4, (2021)
  • [4] Prindle A., Liu J., Asally M., Ly S., Garcia-Ojalvo J., Suel G.M., Ion channels enable electrical communication in bacterial communities, Nature, 527, pp. 59-63, (2015)
  • [5] Humphries J., Xiong L., Liu J., Prindle A., Yuan F., Arjes H.A., Tsimring L., Suel G.M., Species-independent attraction to biofilms through electrical signaling, Cell, 168, 1-2, pp. 200-209, (2017)
  • [6] Larkin J.W., Zhai X., Kikuchi K., Redford S.E., Prindle A., Liu J., Greenfield S., Walczak A.M., Garcia-Ojalvo J., Mugler A., Suel G.M., Signal percolation within a bacterial community, Cell Syst., 7, 2, pp. 137-145.e3, (2018)
  • [7] Liu J., Martinez-Corral R., Prindle A., Lee D.D., Larkin J., Gabalda-Sagarra M., Garcia-Ojalvo J., Suel G.M., Coupling between distant biofilms and emergence of nutrient time-sharing, Science, 356, 6338, pp. 638-642, (2017)
  • [8] Yang C.Y., Bialecka-Fornal M., Weatherwax C., Larkin J.W., Prindle A., Liu J., Garcia-Ojalvo J., Suel G.M., Encoding membrane-potential-based memory within a microbial community, Cell Syst., 10, 5, pp. 417-423.e3, (2020)
  • [9] Kralj J.M., Hochbaum D.R., Douglass A.D., Cohen A.E., Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein, Science, 333, 6040, pp. 345-348, (2011)
  • [10] Masi E., Ciszak M., Santopolo L., Frascella A., Giovannetti L., Marchi E., Viti C., Mancuso S., Electrical spiking in bacterial biofilms, J. R. Soc. Interface, 12, 102, (2015)