Sex estimation from maxillofacial radiographs using a deep learning approach

被引:2
作者
Hase, Hiroki [1 ]
Mine, Yuichi [1 ,2 ]
Okazaki, Shota [1 ,2 ]
Yoshimi, Yuki [3 ]
Ito, Shota
Peng, Tzu-Yu [4 ]
Sano, Mizuho [1 ]
Koizumi, Yuma
Kakimoto, Naoya [4 ]
Tanimoto, Kotaro [5 ]
Murayama, Takeshi [1 ,2 ]
机构
[1] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Med Syst Engn, 1-2-3 Kasumi, Minami Ku, Hiroshima 7348553, Japan
[2] Hiroshima Univ, Project Res Ctr Integrating Digital Dent, 1-2-3 Kasumi,Minami Ku, Hiroshima 7348553, Japan
[3] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Orthodont & Craniofacial Dev Biol, 1-2-3 Kasumi,Minami Ku, Hiroshima 7348553, Japan
[4] Taipei Med Univ, Coll Oral Med, Sch Dent, 250 Wu Hosing St, Taipei 11031, Taiwan
[5] Hiroshima Univ, Grad Sch Biomed & Hlth Sci, Dept Oral & Maxillofacial Radiol, 1-2-3 Kasumi,Minami Ku, Hiroshima 7348553, Japan
关键词
Artificial intelligence; Deep learning; Sex estimation; Maxillofacial radiograph; Lateral cephalogram; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION;
D O I
10.4012/dmj.2023-253
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The purpose of this study was to construct deep learning models for more efficient and reliable sex estimation. Two deep learning models, VGG16 and DenseNet-121, were used in this retrospective study. In total, 600 lateral cephalograms were analyzed. A saliency map was generated by gradient-weighted class activation mapping for each output. The two deep learning models achieved high values in each performance metric according to accuracy, sensitivity (recall), precision, F1 score, and areas under the receiver operating characteristic curve. Both models showed substantial differences in the positions indicated in saliency maps for male and female images. The positions in saliency maps also differed between VGG16 and DenseNet-121, regardless of sex. This analysis of our proposed system suggested that sex estimation from lateral cephalograms can be achieved with high accuracy using deep learning
引用
收藏
页码:394 / 399
页数:6
相关论文
共 27 条
[1]   Artificial intelligence for sex determination of skeletal remains: Application of a deep learning artificial neural network to human skulls [J].
Bewes, James ;
Low, Andrew ;
Morphett, Antony ;
Pate, F. Donald ;
Henneberg, Maciej .
JOURNAL OF FORENSIC AND LEGAL MEDICINE, 2019, 62 :40-43
[2]   Automatic sex estimation using deep convolutional neural network based on orthopantomogram images [J].
Bu, Wen-qing ;
Guo, Yu-xin ;
Zhang, Dong ;
Du, Shao-yi ;
Han, Meng-qi ;
Wu, Zi-xuan ;
Tang, Yu ;
Chen, Teng ;
Guo, Yu-cheng ;
Meng, Hao-tian .
FORENSIC SCIENCE INTERNATIONAL, 2023, 348
[3]  
Chauhan T, 2021, Int J Inf Manag Data Insights, V1
[4]   A comprehensive review of the literature on the biological effects from dental X-ray exposures [J].
Chauhan, Vinita ;
Wilkins, Ruth C. .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2019, 95 (02) :107-119
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
Huang G, 2018, Arxiv, DOI [arXiv:1608.06993, 10.48550/arXiv.1608.06993, DOI 10.48550/ARXIV.1608.06993]
[7]   Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning [J].
Ito, Shota ;
Mine, Yuichi ;
Yoshimi, Yuki ;
Takeda, Saori ;
Tanaka, Akari ;
Onishi, Azusa ;
Peng, Tzu-Yu ;
Nakamoto, Takashi ;
Nagasaki, Toshikazu ;
Kakimoto, Naoya ;
Murayama, Takeshi ;
Tanimoto, Kotaro .
SCIENTIFIC REPORTS, 2022, 12 (01)
[8]   Detecting the presence of supernumerary teeth during the early mixed dentition stage using deep learning algorithms: A pilot study [J].
Mine, Yuichi ;
Iwamoto, Yuko ;
Okazaki, Shota ;
Nakamura, Kentaro ;
Takeda, Saori ;
Peng, Tzu-Yu ;
Mitsuhata, Chieko ;
Kakimoto, Naoya ;
Kozai, Katsuyuki ;
Murayama, Takeshi .
INTERNATIONAL JOURNAL OF PAEDIATRIC DENTISTRY, 2022, 32 (05) :678-685
[9]   Deep learning: A primer for dentists and dental researchers [J].
Mohammad-Rahimi, Hossein ;
Rokhshad, Rata ;
Bencharit, Sompop ;
Krois, Joachim ;
Schwendicke, Falk .
JOURNAL OF DENTISTRY, 2023, 130
[10]   A scoping review of transfer learning research on medical image analysis using ImageNet [J].
Morid, Mohammad Amin ;
Borjali, Alireza ;
Del Fiol, Guilherme .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 128 (128)