Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI

被引:0
作者
Naughton, Noel [1 ,2 ]
Cahoon, Stacey M. [3 ]
Sutton, Bradley P. [4 ,5 ]
Georgiadis, John G. [3 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61820 USA
[2] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[3] IIT, Departmentof Biomed Engn, Chicago, IL 60616 USA
[4] Univ Illinois, Dept Bioengn, Urbana, IL 61820 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61820 USA
关键词
Muscles; Microstructure; Numerical models; Extracellular; Permeability; Organizations; Tensors; Diffusion-weighted MRI; Gaussian process; meta-model; microstructure; skeletal muscle; WATER DIFFUSION; QUALITY; TENSOR; TIME; MODEL; IMAGE; SENSITIVITY; EVOLUTION; STRENGTH; SIZE;
D O I
10.1109/TMI.2024.3397790
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.
引用
收藏
页码:3698 / 3709
页数:12
相关论文
共 50 条
[21]   Exercise-related leg muscle signal changes: assessment using diffusion-weighted MRI [J].
Kolmer, Floriane ;
Bierry, Guillaume ;
Willaume, Thibault .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
[22]   Nonparametric Bayesian inference of the fiber orientation distribution from diffusion-weighted MR images [J].
Kaden, Enrico ;
Kruggel, Frithjof .
MEDICAL IMAGE ANALYSIS, 2012, 16 (04) :876-888
[23]   Interrelations of muscle functional MRI, diffusion-weighted MRI and 31P-MRS in exercised lower back muscles [J].
Hiepe, Patrick ;
Gussew, Alexander ;
Rzanny, Reinhard ;
Anders, Christoph ;
Walther, Mario ;
Scholle, Hans-Christoph ;
Reichenbach, Juergen R. .
NMR IN BIOMEDICINE, 2014, 27 (08) :958-970
[24]   Whole-body diffusion-weighted MRI in a case of Rosai–Dorfman disease with exclusive multifocal skeletal involvement [J].
Rebecca E. Rittner ;
Ulrich Baumann ;
Florian Laenger ;
Dagmar Hartung ;
Herbert Rosenthal ;
Katja Hueper .
Skeletal Radiology, 2012, 41 :709-713
[25]   Repeatability of IVIM biomarkers from diffusion-weighted MRI in head and neck: Bayesian probability versus neural network [J].
Koopman, Thomas ;
Martens, Roland ;
Gurney-Champion, Oliver J. ;
Yaqub, Maqsood ;
Lavini, Cristina ;
de Graaf, Pim ;
Castelijns, Jonas ;
Boellaard, Ronald ;
Marcus, J. Tim .
MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (06) :3394-3402
[26]   Whole-body diffusion-weighted MRI in a case of Rosai-Dorfman disease with exclusive multifocal skeletal involvement [J].
Rittner, Rebecca E. ;
Baumann, Ulrich ;
Laenger, Florian ;
Hartung, Dagmar ;
Rosenthal, Herbert ;
Hueper, Katja .
SKELETAL RADIOLOGY, 2012, 41 (06) :709-713
[27]   Differentiating locally recurrent rectal cancer from scar tissue: Value of diffusion-weighted MRI [J].
Grosu, Sergio ;
Schaefer, Arnd-Oliver ;
Baumann, Tobias ;
Manegold, Philipp ;
Langer, Mathias ;
Gerstmair, Axel .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (07) :1265-1270
[28]   Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI [J].
Pizzolato, Marco ;
Canales-Rodriguez, Erick Jorge ;
Andersson, Mariam ;
Dyrby, Tim B. .
MEDICAL IMAGE ANALYSIS, 2023, 86
[29]   Diffusion-weighted MRI in differentiating malignant from benign thyroid nodules: a meta-analysis [J].
Chen, Lihua ;
Xu, Jian ;
Bao, Jing ;
Huang, Xuequan ;
Hu, Xiaofei ;
Xia, Yunbao ;
Wang, Jian .
BMJ OPEN, 2016, 6 (01)
[30]   Learning ADC maps from accelerated radial k-space diffusion-weighted MRI in mice using a deep CNN-transformer model [J].
Li, Yuemeng ;
Joaquim, Miguel Romanello ;
Pickup, Stephen ;
Song, Hee Kwon ;
Zhou, Rong ;
Fan, Yong .
MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (01) :105-117