Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI

被引:0
|
作者
Naughton, Noel [1 ,2 ]
Cahoon, Stacey M. [3 ]
Sutton, Bradley P. [4 ,5 ]
Georgiadis, John G. [3 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61820 USA
[2] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
[3] IIT, Departmentof Biomed Engn, Chicago, IL 60616 USA
[4] Univ Illinois, Dept Bioengn, Urbana, IL 61820 USA
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61820 USA
关键词
Muscles; Microstructure; Numerical models; Extracellular; Permeability; Organizations; Tensors; Diffusion-weighted MRI; Gaussian process; meta-model; microstructure; skeletal muscle; WATER DIFFUSION; QUALITY; TENSOR; TIME; MODEL; IMAGE; SENSITIVITY; EVOLUTION; STRENGTH; SIZE;
D O I
10.1109/TMI.2024.3397790
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Muscle health is a critical component of overall health and quality of life. However, current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function. To address this, we present a physics-inspired, machine learning-based framework for the non-invasive estimation of microstructural organization in skeletal muscle from diffusion-weighted MRI (dMRI) in an uncertainty-aware manner. To reduce the computational expense associated with direct numerical simulations of dMRI physics, a polynomial meta-model is developed that accurately represents the input/output relationships of a high-fidelity numerical model. This meta-model is used to develop a Gaussian process (GP) model that provides voxel-wise estimates and confidence intervals of microstructure organization in skeletal muscle. Given noise-free data, the GP model accurately estimates microstructural parameters. In the presence of noise, the diameter, intracellular diffusion coefficient, and membrane permeability are accurately estimated with narrow confidence intervals, while volume fraction and extracellular diffusion coefficient are poorly estimated and exhibit wide confidence intervals. A reduced-acquisition GP model, consisting of one-third the diffusion-encoding measurements, is shown to predict parameters with similar accuracy to the original model. The fiber diameter and volume fraction estimated by the reduced GP model is validated via histology, with both parameters accurately estimated, demonstrating the capability of the proposed framework as a promising non-invasive tool for assessing skeletal muscle health and function.
引用
收藏
页码:3698 / 3709
页数:12
相关论文
共 50 条
  • [1] Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology
    Fokkinga, Ella
    Hernandez-Tamames, Juan A.
    Ianus, Andrada
    Nilsson, Markus
    Tax, Chantal M. W.
    Perez-Lopez, Raquel
    Grussu, Francesco
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (04) : 1278 - 1304
  • [2] Characteristics of diffusion-weighted stimulated echo pulse sequence in human skeletal muscle
    Hata J.
    Yagi K.
    Hikishima K.
    Numano T.
    Goto M.
    Yano K.
    Radiological Physics and Technology, 2013, 6 (1) : 92 - 97
  • [3] Diffusion-weighted MRI of denervated muscle: a clinical and experimental study
    Nathalie Holl
    Andoni Echaniz-Laguna
    Guillaume Bierry
    Michel Mohr
    Jean-Philippe Loeffler
    Thomas Moser
    Jean-Louis Dietemann
    Stéphane Kremer
    Skeletal Radiology, 2008, 37 : 1111 - 1117
  • [4] Diffusion-weighted MRI of denervated muscle: a clinical and experimental study
    Holl, Nathalie
    Echaniz-Laguna, Andoni
    Bierry, Guillaume
    Mohr, Michel
    Loeffler, Jean-Philippe
    Moser, Thomas
    Dietemann, Jean-Louis
    Kremer, Stephane
    SKELETAL RADIOLOGY, 2008, 37 (12) : 1111 - 1117
  • [5] Determination of muscle fibre orientation using Diffusion-Weighted MRI
    VanDoorn, A
    Bovendeerd, PHM
    Nicolay, K
    Drost, MR
    Janssen, JD
    EUROPEAN JOURNAL OF MORPHOLOGY, 1996, 34 (01): : 5 - 10
  • [6] Accelerated Diffusion-Weighted MRI of Rectal Cancer Using a Residual Convolutional Network
    Mohammadi, Mohaddese
    Kaye, Elena A.
    Alus, Or
    Kee, Youngwook
    Pernicka, Jennifer Golia S.
    El Homsi, Maria
    Petkovska, Iva
    Otazo, Ricardo
    BIOENGINEERING-BASEL, 2023, 10 (03):
  • [7] Double pulsed field gradient diffusion MRI to assess skeletal muscle microstructure
    Berry, D. B.
    Galinsky, V. L.
    Hutchinson, E. B.
    Galons, J. P.
    Ward, S. R.
    Frank, L. R.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1582 - 1593
  • [8] Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn's disease
    Freiman, Moti
    Perez-Rossello, Jeannette M.
    Callahan, Michael J.
    Bittman, Mark
    Mulkern, Robert V.
    Bousvaros, Athos
    Warfield, Simon K.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 37 (01) : 156 - 163
  • [9] Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI
    Karimi, Davood
    Vasung, Lana
    Jaimes, Camilo
    Machado-Rivas, Fedel
    Warfield, Simon K.
    Gholipour, Ali
    NEUROIMAGE, 2021, 239
  • [10] Feasibility of Accelerated Prostate Diffusion-Weighted Imaging on 0.55 T MRI Enabled With Random Matrix Theory Denoising
    Lemberskiy, Gregory
    Chandarana, Hersh
    Bruno, Mary
    Ginocchio, Luke A.
    Huang, Chenchan
    Tong, Angela
    Keerthivasan, Mahesh Bharath
    Fieremans, Els
    Novikov, Dmitry S.
    INVESTIGATIVE RADIOLOGY, 2023, 58 (10) : 720 - 729