Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering

被引:2
|
作者
Robles, Karla N. [1 ]
Zahra, Fatima tuz [1 ]
Mu, Richard [1 ]
Giorgio, Todd [1 ,2 ]
机构
[1] Tennessee State Univ, TIGER Inst, Nashville, TN 37209 USA
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
关键词
tissue engineering; scaffold fabrication; poly(epsilon-caprolactone) (PCL); electrospinning; biocompatibility; composite scaffolds; scaffold wettability; nanofibers; biomaterials; FABRICATION; FIBERS; CANCER;
D O I
10.3390/polym16202853
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Tissue engineering has great potential for the restoration of damaged tissue due to injury or disease. During tissue development, scaffolds provide structural support for cell growth. To grow healthy tissue, the principal components of such scaffolds must be biocompatible and nontoxic. Poly(epsilon-caprolactone) (PCL) is a biopolymer that has been used as a key component of composite scaffolds for tissue engineering applications due to its mechanical strength and biodegradability. However, PCL alone can have low cell adherence and wettability. Blends of biomaterials can be incorporated to achieve synergistic scaffold properties for tissue engineering. Electrospun PCL-based scaffolds consist of single or blended-composition nanofibers and nanofibers with multi-layered internal architectures (i.e., core-shell nanofibers or multi-layered nanofibers). Nanofiber diameter, composition, and mechanical properties, biocompatibility, and drug-loading capacity are among the tunable properties of electrospun PCL-based scaffolds. Scaffold properties including wettability, mechanical strength, and biocompatibility have been further enhanced with scaffold layering, surface modification, and coating techniques. In this article, we review nanofibrous electrospun PCL-based scaffold fabrication and the applications of PCL-based scaffolds in tissue engineering as reported in the recent literature.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Electrically conductive nanofibrous scaffolds based on poly(ethylene glycol)s-modified polyaniline and poly(ε-caprolactone) for tissue engineering applications
    Hatamzadeh, Maryam
    Najafi-Moghadam, Peyman
    Beygi-Khosrowshahi, Younes
    Massoumi, Bakhshali
    Jaymand, Mehdi
    RSC ADVANCES, 2016, 6 (107): : 105371 - 105386
  • [42] Poly(lactic acid) nanofibrous scaffolds for tissue engineering
    Santoro, Marco
    Shah, Sarita R.
    Walker, Jennifer L.
    Mikos, Antonios G.
    ADVANCED DRUG DELIVERY REVIEWS, 2016, 107 : 206 - 212
  • [43] Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering
    Binulal, N. S.
    Natarajan, Amrita
    Menon, Deepthy
    Bhaskaran, V. K.
    Mony, Ullas
    Nair, S. V.
    BIOMEDICAL MATERIALS, 2012, 7 (06)
  • [44] Three-dimensional nanofibrous and porous scaffolds of poly(ε-caprolactone)-chitosan blends for musculoskeletal tissue engineering
    Pereira, Andreia Leal
    Semitela, Angela
    Girao, Andre F.
    Completo, Antonio
    Marques, Paula A. A. P.
    Guieu, Samuel
    Fernandes, Maria Helena V.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (07) : 950 - 961
  • [45] Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering
    Li, Wan-Ju
    Mauck, Robert L.
    Cooper, James A.
    Yuan, Xiaoning
    Tuan, Rocky S.
    JOURNAL OF BIOMECHANICS, 2007, 40 (08) : 1686 - 1693
  • [46] Electrospun Polyhydroxybutyrate and Poly(L-lactide-co-ε-caprolactone) Composites as Nanofibrous Scaffolds
    Daranarong, Donraporn
    Chan, Rodman T. H.
    Wanandy, Nico S.
    Molloy, Robert
    Punyodom, Winita
    Foster, L. John R.
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [47] Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications
    Dibazar, Zahra Ebrahimvand
    Nie, Lei
    Azizi, Mehdi
    Nekounam, Houra
    Hamidi, Masoud
    Shavandi, Amin
    Izadi, Zhila
    Delattre, Cedric
    MATERIALS, 2023, 16 (07)
  • [48] Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering
    Unnithan, Afeesh R.
    Pichiah, P. B. Tirupathi
    Gnanasekaran, Gopalsamy
    Seenivasan, Kalaiselvi
    Barakat, Nasser A. M.
    Cha, Youn-Soo
    Jung, Che-Hun
    Shanmugam, Achiraman
    Kim, Hak Yong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 415 : 454 - 460
  • [49] Advances in electrospun scaffolds for meniscus tissue engineering and regeneration
    Wang, Xiaoyu
    Ding, Yangfan
    Li, Haiyan
    Mo, Xiumei
    Wu, Jinglei
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (04) : 923 - 949
  • [50] Electrospun Scaffolds Based on Poly(butyl cyanoacrylate) for Tendon Tissue Engineering
    Bianchi, Eleonora
    Vigani, Barbara
    Ruggeri, Marco
    Del Favero, Elena
    Ricci, Caterina
    Grisoli, Pietro
    Ferraretto, Anita
    Rossi, Silvia
    Viseras, Cesar
    Sandri, Giuseppina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)