An innovative sludge-derived capsule for self-healing cementitious materials

被引:0
|
作者
Ataabadi, Hossein Sanaei [1 ]
Liu, Yue [1 ]
Ma, Jun [1 ]
Zeng, Jun-Jie [1 ]
Huang, Guangtong [1 ]
Zhuge, Yan [1 ]
机构
[1] Univ South Australia, UniSA STEM, Adelaide, SA 5000, Australia
基金
澳大利亚研究理事会;
关键词
Self-healing composite; Alum sludge; Encapsulation; Morphology; Healing proficiency; Microstructure; PORTLAND-CEMENT; CONCRETE; MICROCAPSULES; EFFICIENCY; BEHAVIOR;
D O I
10.1016/j.jclepro.2024.144120
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An innovative eco-efficient capsule utilizing drinking water treatment sludge (DWTS) as a healing agent for concrete crack sealing was developed. In this study, the core materials comprised a mix of DWTS and calcium hydroxide, granulated by poly (ethylene glycol). A non-toxic polymer, Ethyl cellulose (EC), is applied as the protective shell material. The morphology, internal structure, and leakage mechanism of capsules, self-healing performance of cracked mortars and the composition of resulting healing products were assessed. Obtained results indicated that EC uniformly covered the spherical core material following the designed coating procedures. The main elements released from the capsules were Ca, Al and Si after dissolution of polyethylene glycol (PEG), which would contribute to pozzolanic reactions inside the matrix. Cracks with an initial width of 400 mu m were completely healed after 7 days of curing. Such a healing process also led to an 73% enhancement in compressive strength at a healing age of 28 days. The water tightness of capsule-based samples improved by more than 90% in the first 7 days, compared to only 10% in control samples. The predominant healing products were calcium carbonate in the form of calcite, and some content of aluminium-bearing phases derived from the pozzolanic reaction of DWTS.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantitative evaluation of self-healing capacity in cementitious materials
    Amenta M.
    Metaxa Z.S.
    Papaioannou S.
    Katsiotis M.S.
    Kilikoglou V.
    Kourkoulis S.K.
    Karatasios I.
    Material Design and Processing Communications, 2021, 3 (03):
  • [22] Self-Healing Characterization of Engineered Cementitious Composite Materials
    Kan, Li-Li
    Shi, Hui-Sheng
    Sakulich, Aaron R.
    Li, Victor C.
    ACI MATERIALS JOURNAL, 2010, 107 (06) : 617 - 624
  • [23] Recent Advances in Intrinsic Self-Healing Cementitious Materials
    Li, Wenting
    Dong, Biqin
    Yang, Zhengxian
    Xu, Jing
    Chen, Qing
    Li, Haoxin
    Xing, Feng
    Jiang, Zhengwu
    ADVANCED MATERIALS, 2018, 30 (17)
  • [24] Self-healing behavior of engineered cementitious composites materials
    Kan, Lili
    Shi, Huisheng
    Zhai, Guangfei
    Ning, Ping
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2011, 39 (04): : 682 - 689
  • [25] Self-healing capability of cementitious composites incorporating different supplementary cementitious materials
    Sahmaran, Mustafa
    Yildirim, Gurkan
    Erdem, Tahir K.
    CEMENT & CONCRETE COMPOSITES, 2013, 35 (01): : 89 - 101
  • [26] Analytical models to estimate efficiency of capsule-based self-healing cementitious materials considering effect of capsule shell thickness
    Fang, Xurui
    Pan, Zichao
    Chen, Airong
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 274 (274)
  • [27] Factors influencing self-healing mechanisms of cementitious materials: A review
    Mohamed, Abdulahi
    Zhou, Yonghui
    Bertolesi, Elisa
    Liu, Mengmei
    Liao, Feiyu
    Fan, Mizi
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 393
  • [28] Study on Self-healing Cementitious Materials with Hydrogels Encapsulated Phosphate
    Li Q.
    Liu Z.
    Chen W.
    Yao G.
    Chen W.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (03): : 507 - 512and520
  • [29] Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers
    Snoeck, Didier
    Van Tittelboom, Kim
    Steuperaert, Stijn
    Dubruel, Peter
    De Belie, Nele
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (01) : 13 - 24
  • [30] Biomimetic Self-Healing Cementitious Construction Materials for Smart Buildings
    Shah, Kwok Wei
    Huseien, Ghasan Fahim
    BIOMIMETICS, 2020, 5 (04) : 1 - 22