Introduction of a modified anomalous vortex beam with self-focusing properties

被引:0
|
作者
Al-Ahsab, Hassan [1 ,2 ]
Cheng, Mingjian [1 ]
Cao, Yuancong [1 ]
Zhang, Huan
Yi, Xiang [3 ]
Yan, Xu [4 ]
Guo, Lixin [1 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Thamar Univ, Dept Phys, Fac Appl Sci, Thamar, Yemen
[3] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[4] Air Force Engn Univ, Fundamentals Dept, Xian 710051, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 22期
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; PROPAGATION; CROSSTALK; ARRAY;
D O I
10.1364/OE.538458
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study introduces and experimentally demonstrates the concept of a modified anomalous vortex beam (MAVB), which carries orbital angular momentum (OAM) and exhibits unique self-focusing properties. By utilizing holographic techniques and customizing phase masks, we precisely control the beam's phase and intensity distribution, enhancing self-focusing behavior while preserving traditional anomalous vortex beam features. We derive an analytical formula to describe MAVB propagation within a paraxial ABCD optical system. The self-focusing characteristics are influenced by initial parameters such as beam order, quantum number, beam waist, wavelength, and the modification parameter. Additionally, we simulate MAVB propagation and their OAM spectrum in maritime atmospheric turbulence. Through comprehensive theoretical analysis and experimental validation, we show how MAVBs achieve controlled self-focusing, leading to enhanced beam control and stability. Our study explores the mechanisms, design principles, and practical implications of MAVBs, emphasizing their potential to revolutionize optical applications.
引用
收藏
页码:39429 / 39445
页数:17
相关论文
共 50 条
  • [21] Experimentally determined critical power for self-focusing of femtosecond vortex beams in air by a fluorescence measurement
    Liang, Wei
    Li, Dongwei
    Chang, Junwei
    Xi, Tingting
    Ji, Longfei
    Li, Deming
    Zhang, Lanzhi
    Hao, Zuoqiang
    OPTICS EXPRESS, 2023, 31 (02) : 1557 - 1566
  • [22] Small-Scale Self-focusing
    Campillo, Anthony J.
    SELF-FOCUSING: PAST AND PRESENT: FUNDAMENTALS AND PROSPECTS, 2009, 114 : 157 - 173
  • [23] Self-focusing of Hermite-cosh-Gaussian laser beam in semiconductor quantum plasma
    Wani, Manzoor Ahmad
    Ghotra, Harjit Singh
    Kant, Niti
    OPTIK, 2018, 154 : 497 - 502
  • [24] Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma
    Gill, Tarsem Singh
    Kaur, Ravinder
    Mahajan, Ranju
    LASER AND PARTICLE BEAMS, 2011, 29 (02) : 183 - 191
  • [25] Exponential density transition based self-focusing of Gaussian laser beam in collisional plasma
    Valkunde, A. T.
    Patil, S. D.
    Takale, M. V.
    Vhanmore, B. D.
    Urunkar, T. U.
    Gavade, K. M.
    Gupta, D. N.
    OPTIK, 2018, 158 : 1034 - 1039
  • [26] Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere
    Deng, Hanling
    Ji, Xiaoling
    Li, Xiaoqing
    Zhang, Hao
    Wang, Xianqu
    Zhang, Yuqiu
    OPTICS EXPRESS, 2016, 24 (13): : 14429 - 14437
  • [27] Relativistic ponderomotive self-focusing of quadruple Gaussian laser beam in cold quantum plasma
    Richa
    Aggarwal, Munish
    Kumar, Harish
    Mahajan, Ranju
    Arora, Navdeep Singh
    Gill, Tarsem Singh
    LASER AND PARTICLE BEAMS, 2018, 36 (03) : 353 - 358
  • [28] Relativistic self-focusing of super-Gaussian laser beam in plasma with transverse magneticfield
    Gill, Tarsem Singh
    Mahajan, Ranju
    Kaur, Ravinder
    Gupta, Suhail
    LASER AND PARTICLE BEAMS, 2012, 30 (03) : 509 - 516
  • [29] Self-focusing/defocusing of skew-cosh-Gaussian laser beam for collisional plasma
    Khandale, K. Y.
    Patil, S. S.
    Takale, P. T.
    Patil, A. S.
    Patil, R. T.
    Patil, S. D.
    Takale, M., V
    LASER PHYSICS, 2024, 34 (03)
  • [30] Characteristic study of anomalous vortex beam through a paraxial optical system
    Xu, Yonggen
    Wang, Shijian
    OPTICS COMMUNICATIONS, 2014, 331 : 32 - 38