Large-scale experimental study on marine hydrate-based CO2 sequestration

被引:0
|
作者
Ge, Yang [1 ]
Wang, Lei [2 ,3 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Hebei Key Lab Green Construct & Intelligent Mainte, Qinhuangdao 066004, Peoples R China
关键词
Deep sea; CO; 2; sequestration; Hydrate; Large-scale simulation system; GAS-HYDRATE; POROUS-MEDIA; INJECTION; DISPOSAL; STORAGE; SIZE;
D O I
10.1016/j.energy.2024.133649
中图分类号
O414.1 [热力学];
学科分类号
摘要
In recent years, the global climate issues caused by CO2 have become increasingly severe, triggering a series of technological reforms aimed at decarbonization. Among these, the marine hydrate-based CO2 sequestration (HBCS) technology has shown great potential. However, the current research on HBCS mainly relies on smallscale experimental studies, and the corresponding conclusions lack practical applications. Therefore, this paper independently developed a large-scale HBCS experimental system with a 1700 L high-pressure reactor, which has a total of 80 temperature measurement points and 80 pressure measurement points, as well as 9 horizontal wells and 9 vertical wells. This paper utilizes this system to conduct HBCS research on water-saturated and coarse-grained quartz sand at 11 MPa pore pressure through vertical and horizontal wells. The experimental results indicate that under conditions of low temperature (7 oC), high flow rate (20 mL/min), and horizontal well, the water to CO2 hydrate conversion (39.83 %), total amount of CO2 sequestration (14296.64 L/STP) and HBCS (12790.48 L/STP) are the highest, corresponding to the minimum reservoir space for sequestering one million tons of CO2. Furthermore, the influence area for HBCS in vertical well is approximately 9000 times the cross-sectional area of the well. This research can provide theoretical references for marine HBCS.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Influence of water volume on CO2 hydrate-based desalination of brine solution
    Nallakukkala, Sirisha
    Lal, Bhajan
    Shariff, Mohd Azmi
    MATERIALS TODAY-PROCEEDINGS, 2022, 56 : 2172 - 2177
  • [42] Molecular Dynamics of Carbon Sequestration via Forming CO2 Hydrate in a Marine Environment
    Wang, Hui
    Lu, Yi
    Zhang, Xiaoxin
    Fan, Qi
    Li, Qingping
    Zhang, Lunxiang
    Zhao, Jiafei
    Yang, Lei
    Song, Yongchen
    ENERGY & FUELS, 2023, 37 (13) : 9309 - 9317
  • [43] Large-Scale Experimental Investigation on the Production Characteristics of Marine Hydrate-Bearing Sediments
    Pang, Weixin
    Li, Qingping
    Zhou, Shouwei
    Chen, Mingqiang
    Ge, Yang
    Zhang, Xiaohan
    ENERGY & FUELS, 2024, 38 (09) : 7840 - 7849
  • [44] A new approach to high conversion CO2 hydrate sequestration by CO2/ water emulsion injection into marine sediments
    Wang, Ming-Long
    Sun, Yi-Fei
    Chen, Hong-Nan
    Zhong, Jin-Rong
    Ren, Liang-Liang
    Wang, Ming
    Rao, Dan
    Liu, Yong-Quan
    Hao, Yi-Bo
    Liu, Bei
    Sun, Chang-Yu
    Chen, Guang-Jin
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [45] Quantitative evaluation of hydrate-based CO2 storage in unsealed marine sediments: Viewpoint from the driving force of hydrate formation and CO2-water contact ability
    Chen, Hong-Nan
    Sun, Yi-Fei
    Pang, Wei-Xin
    Wang, Ming-Long
    Wang, Ming
    Zhong, Jin-Rong
    Ren, Liang-Liang
    Cao, Bo-Jian
    Rao, Dan
    Sun, Chang-Yu
    Chen, Guang-Jin
    FUEL, 2024, 376
  • [46] A new approach to high conversion CO2 hydrate sequestration by CO2/water emulsion injection into marine sediments
    Wang, Ming-Long
    Sun, Yi-Fei
    Chen, Hong-Nan
    Zhong, Jin-Rong
    Ren, Liang-Liang
    Wang, Ming
    Rao, Dan
    Liu, Yong-Quan
    Hao, Yi-Bo
    Liu, Bei
    Sun, Chang-Yu
    Chen, Guang-Jin
    Chemical Engineering Journal, 1600, 503
  • [47] A large-scale experimental study on CO2 capture utilizing slurry-based ab-adsorption approach
    Yan, Shuren
    Xiao, Peng
    Zhu, Ding
    Li, Hai
    Chen, Guangjin
    Liu, Bei
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 56 - 66
  • [48] A large-scale experimental study on CO2 capture utilizing slurry-based ab-adsorption approach
    Shuren Yan
    Peng Xiao
    Ding Zhu
    Hai Li
    Guangjin Chen
    Bei Liu
    ChineseJournalofChemicalEngineering, 2021, 31 (03) : 56 - 66
  • [49] The impact of CO2 clathrate hydrate on deep ocean sequestration of CO2 -: Experimental observations and modeling results
    Warzinski, RP
    Lynn, RJ
    Holder, GD
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 226 - 234
  • [50] Hydrate-based technology for CO2 capture from fossil fuel power plants
    Yang, Mingjun
    Song, Yongchen
    Jiang, Lanlan
    Zhao, Yuechao
    Ruan, Xuke
    Zhang, Yi
    Wang, Shanrong
    APPLIED ENERGY, 2014, 116 : 26 - 40